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ABSTRACT: We leveraged the power of ChatGPT and Bayesian optimization in
the development of a multi-Al-driven system, backed by seven large language
model-based assistants and equipped with machine learning algorithms, that
seamlessly orchestrates a multitude of research aspects in a chemistry laboratory
(termed the ChatGPT Research Group). Our approach accelerated the discovery
of optimal microwave synthesis conditions, enhancing the crystallinity of MOF-
321, MOEF-322, and COF-323 and achieving the desired porosity and water
capacity. In this system, human researchers gained assistance from these diverse Al
collaborators, each with a unique role within the laboratory environment, spanning
strategy planning, literature search, coding, robotic operation, labware design,
safety inspection, and data analysis. Such a comprehensive approach enables a
single researcher working in concert with AI to achieve productivity levels
analogous to those of an entire traditional scientific team. Furthermore, by
reducing human biases in screening experimental conditions and deftly balancing
the exploration and exploitation of synthesis parameters, our Bayesian search approach precisely zeroed in on optimal synthesis
conditions from a pool of 6 million within a significantly shortened time scale. This work serves as a compelling proof of concept for
an Al-driven revolution in the chemistry laboratory, painting a future where Al becomes an efficient collaborator, liberating us from
routine tasks to focus on pushing the boundaries of innovation.

B INTRODUCTION this strategy, we applied it to optimize the synthesis of reticular

Rapid advances in artificial intelligence (AI) inevitably will materials such.as metal—organic framve)rks (MO,FS) anfi
reshape chemistry and what chemists do in the laboratory.' ™ covalent organic frameworks (COFs) using Bayesian opti-

102530 . .
In particular, the recent development of large language models ﬁléalzlc;;l Al éf[oi);%)?ghm;q%p;cglgzal% Vé(;_lfocused Con
(LLMs) and machine learning (ML) algorithms will provide ) [AI(OH)( ) ) [Al(OH)( )]

chemists with robust new means to address material discovery ,(F,lgure la), al?d COE-323 (Flgure 1b), .enabhng the Al to
challenges.>*~17 However, the complexity of laboratory initiate the discovery of optimal, previously unreported,
routines often results in Al participation in isolated parts of m1cr.owavlz—la551ls‘iied g;een hsynth;stlls Cg?;izlt};}?.s w1t1};. XIO
the research process (e.g, predictive modeling, literature previous know'edge ob such conditions. (s muiteAl
mining, robotic operations, and data analysis), resulting in a agent approach’s strength lies in its design, which enables it to

fragmented workflow that requires extensive human inter- (i) ?Ccf,pt t}iluman dir;struct;)ns in © nvers?tc.i)o nal lantgu:geli
. . S . . m m
vention in terms of coding, which is less accessible to chemists ciiminating the need for coding eXperience, i) promote tas

T e ; . o . specialization, minimizing potential confusion from a singular
with limited programming experience. Bridging this gap LLM handline multiole rol d (iii) i X Ltim
demands innovative strategies that harness the AI's real-time andiing Mutple rofes, and i) ncorporaze a real-time,

. . . irs text-based feedback mechanism, allowing the AI to adapt to
learning and self-instruction capabilities toward more compre- . . ) ;
hensive research automation. *2° evolving project details. Furthermore, the ML algorithms

Herein, we introduce a protocol architecture leveraging incorporated into this system ensure that both human bias and

LLMs, specifically ChatGPT powered by the GPT-4 model,”’

to assemble a team of seven distinct Al research assistants, Received: August 29, 2023
each specialized in different aspects of the research Revised:  October 20, 2023
process.”' ~>* This approach seamlessly integrates these virtual Accepted:  October 23, 2023

collaborators, allowing humans to delegate a wide array of Published: November 10, 2023

research tasks from literature review and code writing to
laboratory operations and data interpretation. To demonstrate
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Figure 1. Microwave-assisted green synthesis of the crystalline compounds MOF-321 (MOF-LA2-1), MOF-322, and COF-323. (a) Comparison of
the framework structures of rod MOFs, MOF-321 (left), and MOF-322 (right), highlighting their distinct organic linkers and aluminum rod SBU,
which influence their optimal synthesis conditions. Color code: Al, blue octahedron; C, gray; N, green; S, yellow; O, pink. Hydrogen atoms are
omitted for clarity. (b) Chemical structure of COF-323, [Tp,(DAPY);] s ketonenamines formed by reticulating 1,3,5-triformylphloroglucinol (Tp) and

2,5-diaminopyridine (DAPy).

hallucinations from LLM-based assistants can be reduced. This
approach not only augments research efficiency but also
redefines the traditional research paradigm. It enables a single
researcher to match the productivity of a team of experts, thus
providing a promising pathway toward fully automated
research, wherein humans and AI synergistically collaborate
to drive scientific discovery and innovation.

B RESULTS AND DISCUSSION

Our Al-assisted strategy for optimizing the green synthesis of
crystalline compounds integrates two critical elements: the
LLM-based assistants and the ML algorithm (Figure 2a and b).
The former is designed to facilitate routine laboratory work,
aiding researchers in various time-consuming tasks by
leveraging extensive domain knowledge (Figure 2a). In
contrast, the latter aims to iteratively suggest new experimental
conditions based on existing data, utilizing a Bayesian
optimization search that intelligently accelerates a trial-and-
error approach (Figure 2b), as this algorithm is known for
finding the global optimum of a black box objective function
f(x) in a minimum number of steps”” and has shown previous
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success in property prediction and synthesis optimization for
material discovery.'”'***~%’

At the outset of this study, to expedite the experimental
cycle, we opted for microwave synthesis owing to its reduced
reaction time.””’ An iteration comprising three experiments
could be run and analyzed within 1—3 h before advancing to
the next iteration. The programmability of the microwave
system allowed for precise presetting of reaction parameters,
facilitating the sequential execution of multiple reactions with
minimal human intervention. Besides, microwave synthesis
also facilitates the transferability of optimal stoichiometry
conditions to conventional and solvothermal synthesis
methodologies, enhancing its adaptability.”>*’ For MOFs, an
additional motivation is our interest in green synthesis, as the
resulting MOFs have potential applications as sorbents for
atmospheric water harvesting."' ="’ Avoiding toxic solvents
such as DMF ensures that the synthesis process is environ-
mentally friendly and cost-effective.™**°

We have previously shown that an Al assistant, powered by
ChatGPT, can achieve automation in various tasks such as
extracting synthesis conditions from literature papers, code
generation, research planning, and procedural guidance.“’48

https://doi.org/10.1021/acscentsci.3c01087
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Figure 2. ChatGPT research group. (a) Assigned roles of seven ChatGPT-based assistants, each collaborating to assist human researchers and
contributing to diverse research tasks at different stages of the synthesis optimization. (b) Flowchart outlining the closed-loop Bayesian
optimization process. Each iteration involves three proposed experiments, their execution, data analysis, and integration of the new data into the
existing data set to update the surrogate model, upon which the acquisition function is optimized to suggest the next three experiments.

Here, we further integrate these abilities to create a dynamic
and efficient chemistry laboratory ecosystem that can assist
researchers across various tasks, effectively extending its
applications to building machine learning models, operating
robotic platforms for synthesis preparation, designing 3D
printed labware, and more (Supporting Information, Figure
S1). These tasks, taken together, represent what we term the
ChatGPT Research Group for materials discovery that spans
from the initial stages to the end.

Through prompt engineering strategies (Supporting In-
formation, Sections S1 and 2), we created tailored prompts for
each of the seven Al assistants (Supporting Information,
Figures $2—17), enabling them to focus on their designated
tasks and maintain their specialization.””****~>* This strategy
prevents a single LLM-based assistant from handling a
multitude of tasks, which could dilute its efficiency.

Furthermore, this framework allows individual assistants to
recall previous human interactions as memory and adapt based
on human feedback regarding the task performance. As a
result, in our architecture, the workload of human researchers
was substantially reduced. The Al provided guidance on task
initiation, summarized reaction conditions from the relevant
literature, suggested synthesis parameters, coded the BO
model, generated the experimental conditions, and even
managed the robotic platform and 3D printed the necessary
equipment (Supporting Information, Figures $10 and S13). In
terms of information exchange, our system relies on prompt
engineering strategies and in-context learning (Supporting
Information, Sections S2). When one assistant completes a
task, its text-based output or findings serve as input for the next
assistant. This allows for seamless collaboration and real-time
adaptation, further enhancing efficiency and reducing the
human workload. These efficiencies mean that a single
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researcher, even if newly initiated in the field, can achieve
the productivity level of a team of research scientists.

Our primary objective is to identify the synthesis conditions
under which the MOFs and COFs can achieve optimal
crystallinity within a given number of experiment budgets. We
hypothesized that the parameters to optimize for this purpose
include the stoichiometry of the reactants, the modulator-to-
linker ratio, the concentration levels, the duration of the
reaction, and the temperature conditions. The complex nature
of MOF and COF formation, however, presents a significant
challenge due to the narrow window of optimal conditions.>!
For example, in the quest to optimize the synthesis of MOF-
321, given each variable ranging between 10 and 70 variations,
the combinations would escalate to 6,101,172 synthesis
conditions if a traditional high-throughput method were to
be deployed to screen the entire parameter space of synthesis
(Supporting Information, Section S4). While a human’s
chemical intuition, often derived from previous work, can
help reduce the number of experiments, it may also introduce
unconscious biases favoring conditions they have used before,
potentially overlooking unconventional conditions that could
prove effective. Furthermore, human researchers generally
struggle with screening multiple variables simultaneously due
to the difficulty in quantifying their individual contributions.

In contrast, our approach employs Bayesian optimization,
which suggests a set of three experimental conditions at a time
by varying all five parameters simultaneously (Supporting
Information, Section S9) and allowed us to effectively optimize
the synthesis condition of MOF-321 within 120 experiments
(Figure 3a and Table S1), thereby saving time and labor for
running the rest of the 99.998% of the total ~6 million
potential combinations. To guide the iterative ML algorithm to
search for the optimal condition, we define the objective
variable, the crystallinity index (CI), as the height of the

https://doi.org/10.1021/acscentsci.3c01087
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Figure 3. Outcomes of the Al-guided exploration for MOF-321 synthesis. (a) Plot displaying the crystallinity achieved per experiment across a total
of 120 reactions, summing to 6,235 min, which is approximately 4.5 days with each experiment lasting 52 min on average. The initial 12
experiments utilized randomly selected conditions, while the subsequent 108 experiments were conducted across 36 iterations, with each iteration
comprising 3 experiments. The running average of the crystallinity index, calculated over windows of 3 iterations (9 experiments), is displayed as a
pink line. (b) PXRD patterns obtained from representative experimental samples and (c) detailed synthesis parameter distribution for these
selected experiments displayed via a radar plot, revealing that the Bayesian search initially covers a broad variety space, later narrowing for fine-
tuning. (d) Bar plot illustrating the mean and standard deviation of the crystallinity index for initial experiments (iteration 0) and subsequent
iterations grouped into quartiles (iterations 1—9, 10—18, 19—27, and 28—36). The experiments suggested by the BO process significantly improve
the average crystallinity compared to the initial 12 random experiments, and an increase in iteration numbers leads to better performance in later
iterations. (e) Five scatter plots displaying the evolution of each synthesis parameter suggested by the BO algorithm as a function of iteration

number.

primary peak over its full width at half-maximum (FWHM). A
sharper, narrower peak corresponds to a higher crystallinity
index (Supporting Information, Figure $29). As shown in
Figure 3b and ¢, through this process, our machine learning
algorithm was able to evolve from a position of limited
knowledge about the synthesis to determining the most
suitable conditions for producing high-crystallinity MOFs. The
ML model was initiated with 12 experiments (iteration 0)
featuring randomly chosen synthesis parameters within the
search space (Supporting Information, Section $4), providing a
starting data set that displayed relatively low average CI values
(Figure 3d).

Predominantly, these initial experiments resulted in MOFs
with very poor or no crystallinity (Supporting Information,
Figure $30). This is not surprising due to the vast size of the
search space and the random nature of selecting initial
conditions, resulting in low probabilities for identifying ideal
synthetic conditions. This situation mirrors the challenges
faced by researchers when initiating the synthesis parameter
search for MOFs, as data interpretation can be challenging and

choosing the subsequent experiment direction often proves
difficult.

2164

Nevertheless, as the BO model accrued more data points
from subsequent iterations, the average CI values exhibited a
consistent upward trend from iteration 1 to iteration 36. This
improvement can be attributed to the nature of the ML-driven
approach, which is not restricted to a specific combination of
the synthesis parameters. Unlike human-driven attempts that
usually focus on fine-tuning existing conditions, the ML model
aims to explore a broad variety of synthesis conditions within
as few experimental iterations as possible, maintaining a
balance for the fine-tuning of specific parameters (Supporting
Information, Section S9). This combination of exploration and
exploitation within the synthesis condition domain progres-
sively improved the average CI throughout the process and led
to the identification of multiple optimal conditions, demon-
strating the advantages of ML-driven optimization.

In MOF synthesis, subtle alterations in linker structure often
necessitate drastically different optimal synthesis condi-
tions.”>~>° Overcoming human biases in experimental
condition selection is a significant challenge in new crystalline
materials discovery, and our Al-guided approach provides an
opportunity to tackle this hurdle.”® Encouraged by the success
of MOEF-321 optimization, we extended our approach to a
completely new MOF, using the organic linker H,TVDC

https://doi.org/10.1021/acscentsci.3c01087
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instead of H,PZVDC and a different PXRD instrument.
Success in this case would suggest that the process is (i)
effectively generalizable to other MOFs and (ii) the approach
is reproducible with PXRD instrument variations. As a result,
we successfully obtained the optimal synthesis conditions for
this new MOF-322 within 36 iterations, representing a total of
120 experiments (Supporting Information, Figures S40—S49
and Table S2). Note that the optimization process for MOF-
322 began with a distinct set of 12 initial random experiments
within the same search space. Moreover, the synthesis
parameters under investigation were intentionally kept
consistent with those used for MOF-321. This was done to
illustrate that our method can be reliably applied to the
different MOF without being overly sensitive to the initial
conditions selected.

Importantly, we discovered that this was due to the
differences in the organic linker’s chemical and physical
properties and the differently cis-connected aluminum SBUS, as
indicated by the PXRD refinement (Supporting Information,
Figure SSO and Table S4). MOF-322 has markedly different
optimal synthesis conditions compared to MOEF-321, as
expected (Tables 1 and 2, Figure 4). For instance, while

Table 1. Representative Conditions for the Microwave-
Assisted Synthesis of High-Crystallinity MOF-321

H,PZVDC AP* OH™ H,0 Time  Temp.
Exp. (mmol) (mmol)  (mmol) (mL) (min) (°Cc
84 1.0 0.75 1.75 4.7 60 125
96 1.0 0.70 1.5 4.0 60 108
101 1.0 0.46 1.75 3.6 60 120
114 1.0 0.66 1.75 4.3 45 120
120 1.0 0.66 1.5 4.0 5SS 13§

Table 2. Representative Conditions for the Microwave-
Assisted Synthesis of High-Crystallinity MOF-322

H,TVDC AP* OH™ H,0 Time Temp.
Exp. (mmol) (mmol)  (mmol) (mL) (min) (°c
22 1.0 0.46 2.0 3.6 40 145
68 1.0 0.21 1.75 15 35 145
86 1.0 0.41 1.5 4.3 40 150
103 1.0 0.46 2.0 3.4 60 140
109 1.0 0.99 2.0 3.5 S0 150

MOF-321 prefers the more traditionally used 120 °C synthesis
condition with a metal-to-linker ratio ranging from 1:2 to 2:3
and 1.5 to 1.75 equivalence of the base modulator,*”*” MOF-
322 requires a different set of conditions. Notably, while the
experiment and ML algorithm for these compounds were
independently executed, occasionally a condition yielding a
highly crystalline MOF-321 sample was suggested for MOF-
322, which sometimes, surprisingly, resulted in MOF-322 with
low crystallinity or a side phase. Conversely, when a condition
deemed favorable for MOF-322 is applied to MOF-321,
surprisingly, the resulting compound may exhibit low
crystallinity (Supporting Information, Tables S1 and S2).
This suggests that the optimal conditions and screening
windows for these two compounds greatly differ, and copying
the best condition from one to the other is not an effective
technique.

Each new MOF to be optimized requires courage to explore
new conditions; one cannot always rely solely on chemical
intuition or stay within the comfort zone. As illustrated in the
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Figure 4. Two-dimensional t-SNE dimension reduction scatter plot
representing 120 distinct synthesis conditions for MOF-321 (blue)
and MOF-322 (red). Prior to reduction, the synthesis parameters
(amount of metal, amount of modulator, solvent volume, reaction
time, and temperature) are normalized. The color intensity indicates
the crystallinity index, with deeper shades signifying higher values.
Labels are provided for five representative synthesis conditions from
various regions of the scatter plot, illustrating the distinctiveness of
certain conditions and the successful identification of multiple
conditions with high crystallinity by the BO process. The plot
distinctly indicates that the optimal conditions for MOF-321 and
MOE-322 differ.

t-distributed stochastic neighbor embedding (t-SNE) dimen-
sion reduction scatter plot (Figure 4), the top five best
conditions for MOF-321 and MOF-322 are markedly different,
indicating their distinct synthesis conditions and different
positions within the search space. This also indicates the
validity and reproducibility of our approach in screening for
good crystallinity conditions when a different MOF is selected.

To further demonstrate the efficiency of this ML-driven
method in optimizing crystallinity, which is not only applicable
to MOFs but also has broader applications, we applied this
approach to COF-323 (Supporting Information, Table S3 and
Figures SS0—S58). This COF was considered to be a strong
candidate for water harvestir}§ due to its large pore volume and
f-ketonenamine linkages.sg’3 However, the significant chem-
ical reactivity of 1,3,5-triformylphloroglucinol enables robust
interactions with amine linkers, leading to the swift formation
of amorphous solids.”” Consequently, the reported surface
areas of this COF have been considerably below the theoretical
value, accounting for merely 23—47% of the maximum
theoretical value of 1550 m?/g.°'™* To surmount this
challenge and circumvent laborious screening, we demon-
strated that the BO process, mirroring its success in MOFs,
efficiently identified several optimal conditions within 24
iterations, yielding highly crystalline COF-323 (Supporting
Information, Figure $107). Importantly, throughout the ML-
based closed-loop synthesis condition screening, the proposed
screened conditions included not only those aligned with the
traditional human approach but also those completely distinct
from the conventional synthesis conditions for this type of
COF (Supporting Information, Table S3 and Figure S60).
These findings substantiate our hypothesis that ML can be
used to transcend human biases about chemical behaviors.

As we progressed, having obtained several sets of conditions
that yield high-crystallinity MOF-321, MOF-322, and COF-
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Figure S. Overlay of gas adsorption—desorption isotherms of MOF-321 and MOF-322, prepared under varying synthesis conditions with different
CI values, showing the evolution of optimal synthesis conditions within the search space. (a) Nitrogen sorption isotherms for MOF-321 samples
obtained at 77 K. (b) Water vapor sorption isotherms for MOF-321 samples measured at 298 K, demonstrating different sorption capacities. (c)
Nitrogen sorption isotherms for MOF-322 samples obtained at 77 K. (d) Water vapor sorption isotherms for MOF-322 samples measured at 298
K, showcasing different sorption capacities. Each panel presents data for six distinct samples of each MOF, underscoring the impact of synthesis
conditions on the crystallinity and consequent gas adsorption properties of these MOFs. P, nitrogen or water vapor pressure; Py, 1 atm; and P,
saturation water vapor pressure. Symbols of filled circles denote the adsorption branch, while empty circles denote the desorption branch.

323, we became interested in conditions leading to optimal
MOFs and COFs with maximized pore volumes for
atmospheric water harvesting."””** We first evaluated the gas
sorption behaviors of MOFs to show how the evolution of
optimal synthesis conditions leads to enhanced porosity and
water uptake. As demonstrated in Figure S, we selected six
different synthesis conditions of varying crystallinity index
values for each MOF. Generally, samples with better
crystallinity have a higher likelihood of exhibiting larger BET
surface areas and pore volumes (Supporting Information,
Figures S63—S74), resulting in greater water capacity
(Supporting Information, Figures S86—S97).

However, it is important to note that while our aim for the
BO algorithm is to find high-crystallinity compound synthesis
conditions, higher CI values do not necessarily indicate high
porosity and water capacity. This is because the CI is
associated with the shape of the primary peak, while factors
such as the presence of a side phase, unreacted starting
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materials, or linkers trapped in the pores could decrease the
measured porosity and water uptake. This challenge exists for
both human-dominated synthesis condition screening and ML-
driven synthesis optimization. Nevertheless, while high CI
values do not guarantee high water uptake, compounds with
high water uptake invariably have high CI values. In our case,
the BO process was remarkably effective, successfully
identifying more than 10 combinations of conditions that
yield MOF-321 and MOF-322 with sharp, narrow peaks
(Supporting Information, Section SS). Upon verifying the
porosity and water uptake of these promising candidates, we
were able to find the most optimal conditions of 120
experiments to obtain the best sorption performance for
each compound.

For MOF-321, the optimized Brunauer—Emmett—Teller
(BET) surface area was determined to be 1875 m?/g, with an
experimentally determined pore volume of 0.67 cm®/g. These
measurements are close to the calculated theoretical values®® of
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2025 m2/g for BET surface area and 0.72 cm3/g for pore
volume. Moreover, a notable water uptake capacity of 0.66 g/g
was observed, reflecting that exceptional porosity and desirable
water sorption behavior of this compound were achieved.
Similarly, the optimized MOF-322 demonstrated a BET
surface area of 1584 m?/ g, which accounts for 94% of the
theoretical maximum BET surface area of 1686 mz/g.
Additionally, the experimental measurement of the pore
volume registered at 0.57 cm’/g, nearly paralleling the
calculated volume of 0.61 cm®/g. This particular MOF
demonstrated a water uptake of 0.53 g/g, further corroborating
its efficient capacity. Collectively, these outcomes underscore
the effectiveness of the human—ATI collaboration in our system.
It not only fosters discovery under synthesis conditions for
high crystallinity, porosity, and water capacity but also drives
these metrics toward an almost ideal benchmark, thus realizing
our desired objectives with high productivity and reduced
human labor

Concerning COF-323, our approaches helped identify five
conditions with high BET surface areas ranging from 926 to
1459 m?/g among 82 conditions screened (Supporting
Information, Figure S85). These conditions represent a diverse
combination of synthesis parameters and demonstrate nearly
twice the highest reported BET surface area of this COF in the
literature,” reaching 94% of the theoretical surface area
(Supporting Information, Figures S83 and S84). The working
capacity of the COF-323, synthesized under conditions
recommended by BO, with respect to the 10 to 40% relative
humidity (RH) range, reaches 440 cm?/g (0.35 g/g). This
surpasses the performance of the human-synthesized COF
(Supporting Information, Figure S98) and is comparable to
that of other h{g%h—performing COFs such as AB-COF,*® COF-
480-hydrazide,”” and others.”*™""

B CONCLUDING REMARKS

We have developed a user-friendly Al-guided system that
efficiently optimizes MOF and COF synthesis and requires no
prior knowledge of coding. Our seven LLM-based assistants
can facilitate various aspects of chemistry research, including
planning, literature searching, ML model code writing, robotic
operation, labware design and 3D printing, synthesis guidance,
and experiment data extraction and analysis. While the
Bayesian optimization algorithm, programmed by one of the
assistants, plays a pivotal role in guiding researchers through
the synthesis condition space, the contributions of the other
LLM-based assistants are by no means negligible. They
facilitate a wide array of wet laboratory activities, underscoring
their broad adaptability. Together, these advancements led to
the successful optimization of the green synthesis of MOF-321
and MOF-322 and the synthesis of COF-323, respectively,
using microwave synthesis. Starting with no prior knowledge of
the synthesis conditions, the ML model was able to precisely
locate the narrow optimal synthesis window for these
compounds to optimize crystallinity. This integrated system
overcomes significant challenges, such as the difficulty of
simultaneous parameter manipulation and human bias under
synthesis conditions.

The increased number of successful trials led to the
accelerated identification of optimal porosity and water
adsorption capacity. Under microwave conditions, it took
approximately 4 days (6,235 min) for 120 reactions to
optimize the synthesis condition of 1 compound among over
6 million combinations of synthesis variables. Leveraging
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natural language to instruct LLM-based assistants and set up
ML models, the integrated Al system in our laboratory took
less than a month to build. Although the system is not yet fully
automated, it can be significantly improved with more
advanced robotic platforms. The recent development of
function calling provides the potential for further upgrades,
minimizing human interference and establishing a more
automated system for synthesis optimization. This serves as a
proof of concept to show the future blueprint of a chemistry
laboratory: a team of AI will serve as assistants in different
aspects and work together to greatly accelerate the discovery
and optimization of new compounds in chemistry research;
with minimal manual labor required, researchers can
concentrate on innovative aspects.
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Design and experimental details for microwave-assisted
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