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Section S1. Materials and Methods 

Chemicals 

Acetonitrile (ACN), 1,3,5-trimethoxybenzene, and pyridine (anhydrous, purity ≥ 99.8%) were 

purchased from Sigma-Aldrich. Valerophenone (purity ≥ 98%), pregnenolone acetate (purity ≥ 
99%), norambreinolide (purity ≥ 97%), hexafluoro-2-propanol (HFIP, purity ≥ 99%) 2,2,6,6-

teramethyl-1-piperidinyloxy (TEMPO, purity ≥ 97%),  quinuclidine (QD, purity ≥ 97%), 
tetrabutylammonium perchlorate (Bu4CNlO4, purity ≥ 99%), tetrabutylammonium 
tetrafluoroborate (Et4NBF4, purity ≥ 97%), and tetrabutylammonium hexafluorophosphate 

(Bu4NPF6, purity ≥ 98%) were purchased from Aaron Chemicals. Theaspirane (purity ≥ 96%), N-
hydroxyphthalimide (NHPI, ≥ 98%), 4,5,6,7-tetrachloro-2-hydroxyisoindoline-1,3-dione 

(TCNHPI, purity ≥ 97%), and 1,4-diazabicyclo(2.2.2)octane (DABCO, purity ≥ 98%) were 
purchased from Ambeed. α-Pinene (purity ≥ 98%),  ambroxide (purity ≥ 99%), alpha-ionone (purity 
≥ 95%),  lithium perchlorate anhydrous (LiClO4, purity ≥ 99%), and lithium 

trifluoromethanesulfonate (LiOTf, purity ≥ 98%) were purchased from AK Scientific. 1,4-
dioxaspiro[4.5]dec-6-ene (purity ≥ 95%) was purchased from ChemScence. Valencene (purity ≥ 

95%) was purchased from Aurum Pharmatech LLC. Deuterated solvents were obtained from 
Cambridge Isotope Laboratories. The commercially available reagents were used without 
purification. 

Large language models (LLMs) and data availability 

In this research, several large language models were utilized, including GPT-3.5 and GPT-4 

(developed and maintained by OpenAI), Claude 3 (developed and maintained by Anthropic), and 
the open-sourced Llama 3 (developed by Meta). These models fall under the category of 
autoregressive language models and are based on the transformer architecture.1 Specifically, the 

GPT models (gpt-3.5-turbo, gpt-4-0613, gpt-4-turbo, gpt-4o, and gpt-4o-mini) and OpenAI o1 
models (o1-preview and o1-mini) were accessed via application programming interface (API) from 
OpenAI, the Claude models (claude-3.5-sonnet, claude-3-sonnet, and claude-3-opus) via API from 

Anthropic, and the Llama 3 model (llama-3.1-405b, llama-3-70b) via API on Replicate.  

For function-calling tasks, the backbone models gpt-4o-2024-05-13 and claude-3-5-sonnet-

20240620 were employed, whereas the Llama model was not tested for this purpose. For semantic 
literature analysis, the gpt-4o-2024-05-13 backbone model was used. We note that the GPT-4o 
model can also be accessed via the web user interface (WUI) chatbot ChatGPT (powered by GPT-

4O, version dated May 13, 2024), as the underlying base model is the same. Further documentation 
on the function calling, also known as tool-use, feature of those LLMs can be found at:  

- https://platform.openai.com/docs/guides/function-calling  

- https://docs.anthropic.com/en/docs/build-with-claude/tool-use 

Detailed information on literature data mining is available in Section S3 of the Supporting 

Information. Unless specified, all code generated in this document was produced by LLMs through 
human prompting, and no substantial coding experience was required . Conversations between 

human users and LLMs for literature mining, code generation, and synthesis planning are publicly 
accessible in the Spreadsheets SF3 and SF4 of the Supporting information. These spreadsheets 
include both the human input prompts and the LLM output answers in JSON format.  
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Additional source code can be found in the Github repository (https://github.com/zach-zhiling-
zheng/EChem-Explorations). 

Nuclear magnetic resonance (NMR) spectroscopy 

1H and 13C NMR spectra were acquired on Bruker NEO-500 MHz spectrometers at Department of 

Chemistry Instrumentation Facility, Massachusetts Institute of Technology. Data were reported as 
chemical shifts in ppm relative to CDCl3 (7.26 ppm) for 1H and CDCl3 (77.2 ppm) for 13C. Chemical 
shifts are reported in ppm, and multiplicities are indicated by s (singlet), d (doublet), t (triplet), q 

(quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants, J, are reported in 
Hertz, and integration is provided and assignments are indicated. 
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Section S2. General Reactor Setup  

S2.1. Design and Assembly of Electrochemistry Batch Reactor 

The electrochemistry reactor was prepared in several steps. First, the anode and cathode connectors, 

made from Al 6061, were precisely cut to the specified dimensions and  attached to the reactor top. 
This reactor top plate, crafted from HDPE, was then placed over the alignment plate, ensuring the 

connectors were properly aligned. The alignment plate, also made of HDPE, was essential for 
accurately positioning the electrodes within the reactor. Various electrodes, including nickel, 
graphite, and RVC, were custom-cut to fit the reactor's design. The reactor has the capacity to hold 

48 anodes and 48 cathodes. These electrodes were then inserted into the 4mL vials, which were 
located within the vial locator, a component also fabricated from HDPE. Finally, a gasket was 

placed between the reactor top and the vial locator to ensure a secure and leak-proof assembly. 

 

Table S1. Components and specifications for the electrochemistry batch reactor assembly. 

Description Dimensions Vendor Part No. Notes 

Anode connector 69.13mm x 108.08mm x 1mm Xometry - Al 6061 

Reactor top 77mm x 111mm x 3.18mm Protolabs - HDPE 

Cathode connector 69.13mm x 105.46mm x 1mm Xometry - Al 6061 

Alignment plate 77mm x 111mm x 12mm Protolabs - HDPE 

Nickel electrode  1mm x 60mm Sigma Aldrich GF30807097 Custom cut  

Graphite electrode  3.175mm x 60mm McMaster-Carr 9121K86 Custom cut  

RVC electrode  6.35mm x 152.4mm McMaster-Carr 3947K141 Custom cut  

Gasket 77mm x 111mm x 0.79mm McMaster-Carr 5787T78 Custom cut  

Vial locator 77mm x 111mm x 46mm Protolabs - HDPE 

 
 

      

Figure S1. 3D model and assembled photograph of the electrochemistry batch reactor. 
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Figure S2. Illustration of the reactor (without reactor top) and electrode connectors. 

 

Figure S3. Drawings of the reactor top. The anode and cathode connectors can be embedded in the 
grooves of the plate. All distances are in millimeters.  
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Figure S4. Drawings of the anode connector. All distances are in millimeters.  

 

 

Figure S5. Drawings of the cathode connector. All distances are in millimeters.  
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Figure S6. Drawings of the alignment plate. All distances are in millimeters.  

 
 

 
Figure S7. Drawings of the vial locator. All distances are in millimeters.   
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Figure S8. Photographs of using a liquid handler to prepare 24 reaction mixtures in 4 ml glass vials 

simultaneously. (A) The side view shows the liquid handler adding solvent to multiple vials. (B) 
The top view shows the arrangement and filling of the vials.   

 
 

 
 

Figure S9. Photographs of the assembled electrochemistry batch reactor. (A) Top view of the 
reactor box with all 96 electrodes inserted. (B) Connecting the reactor to the power supply while 

placed on top of a stir plate. (C) Side view showing the insertion of electrodes into the vials, 
demonstrating the alignment 
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S2.2. Reactivity Screening Experiments 

To obtain the reactivity screening results, we adopted a strategy similar to that reported in the 

previous literature2, but instead of a droplet system, we employed the batch reactor. As described 
in the previous section, the batch reactor contained 24 glass vials, each has a maximum reaction 

volume of 4 mL. Therefore, we set 4mL to be the reaction volume for all 336 screening experiments. 
A stock solution was prepared containing 50 mM of the electrocatalyst N-hydroxyphthalimide 
(NHPI), 50 mM of the electrolyte tetraethylammonium tetrafluoroborate (Et4NBF4), and 50 mM 

pyridine. This stock solution was made by dissolving 5 mmol of each compound in 100 mL of 
acetonitrile-d3 and stirring the mixture for 10 minutes, resulting in a light yellow, clear solution. 

The choice of NHPI as a mediator (electrocatalyst) was based on an analysis of a literature text-
mining dataset reported in Section S3, which identified NHPI as the most commonly used 
electrocatalyst for similar types of reactions. Following the preparation of the stock solution, 0.2 

mmol of the substrate, listed in Table S2, was dissolved in 4 mL of the stock deuterium acetonitrile 
solution to achieve a concentration of 50 mM, and this ensured a 1:1:1 ratio between the substrate, 

mediator, and electrolyte. We note that acetonitrile can be used in replace of deuterium acetonitrile 
for the screening experiments, the reason we decided to use deuterium solvent is to accelerate the 
later analysis process. In addition, each vial was equipped with a PTFE magnetic stir bar (10 

mm/0.39 inch) to facilitate mixing. We note that the substrates for the reactivity screening in this 
study were selected randomly from the laboratory inventory to maximize chemical diversity, and 

all chemicals used were commercially available. For the electrodes, both graphite and reticulated 
vitreous carbon (RVC) electrodes were tested for each substrate. Key reaction parameters, 
including the distance between the 4 electrodes in a vial (3.6 mm and 8.13 mm, respectively), 

stirring speed (600 rpm), reaction time (12 hours), and applied voltage (3.5 V), were kept constant 
across all reactions. It is important to note that an advantage of the use of a batch reactor in this 

study is that it minimized human error by providing a standardized setup, ensuring consistent 
control of all variables, and enhancing the efficiency of the screening process. Additionally, the 
batch reactor design reduced the number of wires and power sources needed for parallel reactions 

and simplified the handling of a large number of reactions on a robotic platform.  

The main objective of the screening experiment was to assign a reactivity label to each compound 

for C(sp3)-H oxidation to alcohol or ketone. Therefore, the primary focus was on whether any 
related product was formed as a result of C-H oxidation, regardless of the yield. To this end, proton 
and carbon NMR were chosen as the methods to determine if the expected oxidation occurred. 

Immediately after the reaction completed, the reactor top and the alignment plate of the reactor 
were removed, and 650 µL of the solution was taken directly for NMR analysis. Each time, 48 

NMR tubes were placed on the autosampler to collect both proton and carbon NMR spectra for 
each sample before and after electrolysis. It should be notes that, in many cases, multiple products 
formed, and the identity of the products was unknown. Overlapping peaks in the proton NMR 

spectra and the inability of carbon NMR to provide indicative information, such as the appearance 
of carbonyl groups, complicated yield quantification. However, by manually comparing the proton 

and carbon NMR spectra of the reaction mixtures before and after electrolysis, it was possible to 
determine whether new species containing hydroxyl or carbonyl groups had formed as a result of 
C-H oxidation. Due to the nature of this analysis, the output was recorded as a Boolean variable—

either conversion (1) or no conversion (-1). This binary approach was adequate for the target 
modeling task designed to accommodate this experimental protocol, and in fact negative data points 

are more important as they are rarely reported in literature. Preliminary results are presented in 
Table S2, and the data is also available in Spreadsheet SF2 in the Supporting Information. 
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Figure S10. Photographs of electrochemical batch reactor setup for reactivity screening 

experiments. (A) Batch reactor: Top and alignment plate with connectors and electrodes (left); vials 
and vial locator (right). (B) Connecting wires to the reactor to supply electricity and turning on the 

magnetic stir plate. (C) Reaction mixtures before the electrolysis. (D) Reaction mixtures after the 
electrolysis. A total of 24 reactions were run every 12 hours, taking approximately two weeks to 
complete the screening of the substrates mentioned in the table below. 

 

Table S2. Boolean outcomes of initial screening results. 

CAS Number SMILES String Reactivity 

84-11-7 C1=CC=C2C(=C1)C3=CC=CC=C3C(=O)C2=O -1 

94-09-7 CCOC(=O)C1=CC=C(C=C1)N -1 

98-06-6 CC(C)(C)C1=CC=CC=C1 -1 

3074-03-1 C1=CC=C2C=C3C(=CC2=C1)C4=CC=CC=C4C3=O -1 

3988-03-2 C1=CC(=CC=C1C(=O)C2=CC=C(C=C2)Br)Br -1 

4452-06-6 C=CC(=O)C1=CC2=CC=CC=C2C=C1 -1 

5118-06-9 COC(=O)C1=C(C=CS1)O -1 

100077-38-1 C1=C2C3=CC(=C(C=C3C4=CC(=C(C=C4C2=CC(=C1S)S)S)S)S)S -1 

100-09-4 COC1=CC=C(C=C1)C(=O)O -1 

100-47-0 C1=CC=C(C=C1)C#N -1 

100-55-0 C1=CC(=CN=C1)CO 1 

100-68-5 CSC1=CC=CC=C1 -1 

10075-50-0 C1=CC2=C(C=CN2)C=C1Br -1 

1013-88-3 C1=CC=C(C=C1)C(=N)C2=CC=CC=C2 -1 

1018-79-7 C1=CC=C2C(=C1)C(=C(C(=C2O)C#N)C#N)O -1 

10275-58-8 CC(C)(C)C1=CC2=C(C=C1)C=CC(=C2)C(C)(C)C -1 

10310-21-1 C1=NC2=C(N1)C(=NC(=N2)N)Cl -1 

10345-87-6 C1CC(=CC(=O)C1)C2=CC=CC=C2 -1 

103-50-4 C1=CC=C(C=C1)COCC2=CC=CC=C2 1 

1035-52-5 C1CCC(CC1)N(C2CCCCC2)C(=O)C3=CC=CC=C3 -1 

104054-27-5 CCC1(CC2=CC=CC=C2C1)C3=CN=CN3 -1 
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104-94-9 COC1=CC=C(C=C1)N -1 

106-40-1 C1=CC(=CC=C1N)Br -1 

106-47-8 C1=CC(=CC=C1N)Cl -1 

106-49-0 CC1=CC=C(C=C1)N 1 

106-51-4 C1=CC(=O)C=CC1=O -1 

1090-13-7 C1=CC=C2C=C3C(=CC2=C1)C(=O)C4=CC=CC=C4C3=O -1 

1092390-02-
7 

B1(OC(C(O1)(C)C)(C)C)C2=CC=C(C=C2)C3=CC4=CC=CC=C4C=C3  -1 

1121-76-2 C1=C[N+](=CC=C1Cl)[O-] -1 

1122-54-9 CC(=O)C1=CC=NC=C1 -1 

1122-58-3 CN(C)C1=CC=NC=C1 -1 

1122-62-9 CC(=O)C1=CC=CC=N1 -1 

116-63-2 C1=CC=C2C(=C1)C(=CC(=C2N)O)S(=O)(=O)O -1 

116-82-5 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C=C3O)Br)N -1 

116-85-8 C1=CC=C2C(=C1)C(=O)C3=C(C=CC(=C3C2=O)O)N -1 

117-12-4 C1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C(=CC=C3)O -1 

117-77-1 C1=CC=C2C(=C1)C(=O)C3=CC(=C(C=C3C2=O)O)N -1 

117-78-2 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C=C(C=C3)C(=O)O -1 

118129-60-5 C1=CC2=C3C(=CC(=C4C3=C1C5=C(C=C6C7=C(C=CC4=C57)C(=O)OC6=O)Br)Br)C(=O)OC2=O -1 

1198-14-7 C1=CC2=C(C=CC(=C2N=C1)O)Br -1 

121-69-7 CN(C)C1=CC=CC=C1 -1 

1221722-10-
6 

CC1=C(C=CC=C1C(=O)O)C2=CC=C(C=C2)OC(F)(F)F 1 

1222-05-5 CC1COCC2=CC3=C(C=C12)C(C(C3(C)C)C)(C)C -1 

123-31-9 C1=CC(=CC=C1O)O -1 

127926-65-2 C1=CC=C2C(=C1)C3=CC=CC=C3C2(C4=CC(=C(C=C4)N)F)C5=CC(=C(C=C5)N)F  -1 

128-64-3 C1=CC=C2C(=C1)C3=C4C(=CC=C5C4=C(C=C3)C6=CC=C7C8=C(C=CC5=C68)C9=CC=CC=C9C7=O)C2=O  -1 

128-67-6 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C=C3)C(=O)O)[N+](=O)[O-] -1 

128-80-3 CC1=CC=C(C=C1)NC2=C3C(=C(C=C2)NC4=CC=C(C=C4)C)C(=O)C5=CC=CC=C5C3=O -1 

128-93-8 CNC1=C2C(=C(C=C1)Br)C(=O)C3=CC=CC=C3C2=O -1 

128-95-0 C1=CC=C2C(=C1)C(=O)C3=C(C=CC(=C3C2=O)N)N -1 

129112-25-0 C1=CC=C(C(=C1)OS(=O)(=O)C(F)(F)F)Br -1 

129-39-5 C1=CC2=C(C(=C1)[N+](=O)[O-])C(=O)C3=C(C2=O)C=CC=C3[N+](=O)[O-] -1 

129-44-2 C1=CC2=C(C(=C1)N)C(=O)C3=C(C2=O)C(=CC=C3)N -1 

129-56-6 C1=CC=C2C(=C1)C3=NNC4=CC=CC(=C43)C2=O -1 

130-15-4 C1=CC=C2C(=O)C=CC(=O)C2=C1 -1 

130-20-1 C1=CC=C2C(=C1)C(=O)C3=CC(=C4C(=C3C2=O)NC5=C(C=C6C(=C5N4)C(=O)C7=CC=CC=C7C6=O)Cl)Cl  -1 

130-26-7 C1=CC2=C(C(=C(C=C2Cl)I)O)N=C1 -1 

130-95-0 COC1=CC2=C(C=CN=C2C=C1)C(C3CC4CCN3CC4C=C)O 1 

131-14-6 C1=CC2=C(C=C1N)C(=O)C3=C(C2=O)C=C(C=C3)N -1 

131-56-6 C1=CC=C(C=C1)C(=O)C2=C(C=C(C=C2)O)O -1 

131-57-7 COC1=CC(=C(C=C1)C(=O)C2=CC=CC=C2)O -1 

13361-64-3 C[Si](C)(C)CC#C 1 

134-81-6 C1=CC=C(C=C1)C(=O)C(=O)C2=CC=CC=C2 -1 
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13534-97-9 C1=CC(=NC=C1N)Br -1 

135-88-6 C1=CC=C(C=C1)NC2=CC3=CC=CC=C3C=C2 -1 

13629-22-6 C1=CC=C2C(=C1)C3=CC=CC=C3C2=NN -1 

13734-36-6 CC(C)(C)OC(=O)N(C)CC(=O)O -1 

137-58-6 CCN(CC)CC(=O)NC1=C(C=CC=C1C)C 1 

14289-45-3 C1=CC=C2C=C(C=CC2=C1)C(=O)C(=O)O -1 

14348-75-5 C1=CC2=C(C=C1Br)C(=O)C3=C2C=CC(=C3)Br -1 

1446-61-3 CC(C)C1=CC2=C(C=C1)C3(CCCC(C3CC2)(C)CN)C 1 

14548-46-0 C1=CC=C(C=C1)C(=O)C2=CC=NC=C2 -1 

147-85-3 C1CC(NC1)C(=O)O 1 

148893-10-1 CN(C)C(=[N+](C)C)N1C2=C(N=CC=C2)[N+](=N1)[O-].F[P-](F)(F)(F)(F)F -1 

14918-69-5 C1=CC(=O)C2=C(C1=O)C(=C(C(=C2O)Cl)Cl)O -1 

14923-84-3 C1=CC2=C(C=CC3=C2C4=C1C=CC(=C4C=C3)N)N -1 

1503-49-7 C1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)C#N -1 

15499-84-0 C1=CC=C2C(=C1)C3=CC=CC=C3C2(C4=CC=C(C=C4)N)C5=CC=C(C=C5)N -1 

156-38-7 C1=CC(=CC=C1CC(=O)O)O -1 

157864-32-9 C1=CC=C(C=C1)CNC2=NC(=NC3=CC=CC=C32)Cl  1 

1579-40-4 CC1=CC=C(C=C1)OC2=CC=C(C=C2)C -1 

1592-95-6 C1=CC=C2C(=C1)C3=C(N2)C=CC(=C3)Br -1 

160591-91-3 B(C1=C(C=C(C=C1)Cl)F)(O)O -1 

1612793-07-
3 

C=CC1=CC2=C(C=C1)C(=C(C#N)C#N)C3=CC=CC=C3C2=C(C#N)C#N -1 

16294-75-0 C1=CC=C2C(=C1)C3=CC=C4C5=C(C=CC(=C35)C2=O)C6=CC=CC=C6S4  -1 

164295-94-7 C1=CC=C2C=C(C=CC2=C1)C3=NNC(=C3)C(=O)O -1 

167869-21-8 COC1=CC=CC(=C1N)C2=CC(=O)C3=CC=CC=C3O2 -1 

1693-28-3 C1=CC=C2C(=C1)C(=O)C3=C(S2)C=CC(=C3)C(F)(F)F -1 

171364-82-2 B1(OC(C(O1)(C)C)(C)C)C2=CC=C(C=C2)C#N -1 

17217-57-1 COC1=CC(=NC=C1)C2=NC=CC(=C2)OC -1 

1729-99-3 C1=CC2=C(C(=C1)C(=O)O)C(=CC=C2)Br -1 

17418-58-5 C1=CC=C(C=C1)OC2=C(C3=C(C(=C2)O)C(=O)C4=CC=CC=C4C3=O)N -1 

17480-69-2 CC(C1=CC=CC=C1)NCC2=CC=CC=C2 1 

1800-42-6 C1=CC=C2C=C(C=CC2=C1)C(=O)C(F)(F)F -1 

18162-48-6 CC(C)(C)[Si](C)(C)Cl -1 

18173-64-3 CC(C)(C)[Si](C)(C)O -1 

1827-27-6 C1=CC(=NC=C1N)F -1 

18801-00-8 CC(C)(C)C1=CC2=CC3=CC=CC=C3C=C2C=C1 -1 

188425-85-6 C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl  -1 

188-94-3 C1=CC2=C3C=CC4=C5C=CC6=C7C=CC=CC7=C8C6=C5C(=C9C4=C3C(=C2C=C1)C=C9)C=C8  -1 

191-07-1 C1=CC2=C3C4=C1C=CC5=C4C6=C(C=C5)C=CC7=C6C3=C(C=C2)C=C7  -1 

191-24-2 C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=CC(=C36)C=C2  -1 

192198-85-9 
C1=CC=C(C=C1)N2C3=CC=CC=C3N=C2C4=CC(=CC(=C4)C5=NC6=CC=CC=C6N5C7=CC=CC=C7)C8=NC9=CC=CC=C9

N8C1=CC=CC=C1 
-1 

1948-33-0 CC(C)(C)C1=C(C=CC(=C1)O)O -1 

19694-02-1 C1=CC2=C3C(=C1)C=CC4=C(C=CC(=C43)C=C2)C(=O)O -1 
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2018-61-3 CC(=O)NC(CC1=CC=CC=C1)C(=O)O 1 

206-44-0 C1=CC=C2C(=C1)C3=CC=CC4=C3C2=CC=C4 -1 

207-08-9 C1=CC=C2C=C3C4=CC=CC5=C4C(=CC=C5)C3=CC2=C1  -1 

2074732-95-
7 

C1CC2(C1C2)S(=O)(=O)C3=CC=C(C=C3)C(F)(F)F -1 

21022-17-3 C1=CC=C(C=C1)C2=CC=CC=C2NC(=O)C(=O)NC3=CC=CC=C3C4=CC=CC=C4  -1 

2103-99-3 C1=CC(=CC=C1C2=CSC(=N2)N)Cl -1 

21145-77-7 CC1CC(C2=C(C1(C)C)C=C(C(=C2)C(=O)C)C)(C)C 1 

21331-43-1 C1=CC=C2C=C(C=CC2=C1)C3=CSC(=N3)N -1 

214360-44-8 B1(OCC(CO1)(C)C)C2=CC=C(C=C2)C#N -1 

214360-73-3 B1(OC(C(O1)(C)C)(C)C)C2=CC=C(C=C2)N -1 

215-58-7 C1=CC=C2C=C3C4=CC=CC=C4C5=CC=CC=C5C3=CC2=C1  -1 

2157-52-0 C1=CC=C2C(=C1)C3=CC=CC=C3C2=NO -1 

217-68-5 C1=CC=C2C(=C1)C3=CC=CC=C3C4=NC=CN=C24 -1 

218-01-9 C1=CC=C2C(=C1)C=CC3=C2C=CC4=CC=CC=C43  -1 

2243590-42-
1 

C1=C(SC2=C1C3=C(C=C(S3)C=O)C4=C2C=C(S4)C=O)C=O -1 

23593-75-1 C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4  -1 

236389-21-2 B(C1=CC2=C(C=C1)C3=CC=CC=C3C24C5=CC=CC=C5C6=CC=CC=C46)(O)O -1 

23676-08-6 CCOC1=CC=C(C=C1)C(=O)OC -1 

23746-81-8 C1=CC=C2C=C(C=CC2=C1)C3=CC4=CC=CC=C4N3 -1 

239-01-0 C1=CC=C2C(=C1)C=CC3=C2NC4=CC=CC=C34 -1 

23912-79-0 C1=CC=C2C(=C1)C(=O)C3=CC4=C(C=C3C2=O)C(=O)C5=CC=CC=C5C4=O -1 

2420-87-3 C1=CC2=C(C=C1C3=CC4=C(C=C3)C(=O)OC4=O)C(=O)OC2=O -1 

2446-83-5 CC(C)OC(=O)N=NC(=O)OC(C)C -1 

2475-44-7 CNC1=C2C(=C(C=C1)NC)C(=O)C3=CC=CC=C3C2=O -1 

2475-45-8 C1=CC(=C2C(=C1N)C(=O)C3=C(C=CC(=C3C2=O)N)N)N -1 

2627-86-3 CC(C1=CC=CC=C1)N -1 

2648079-79-
0 

C1=CC=C2C(=C1)SC3=CC=CC=C3[S+]2C(F)(F)F.C(F)(F)(F)S(=O)(=O)[O-] -1 

2675-89-0 CN(C)C(=O)CCl -1 

2714-87-6 C1=CC=C(C=C1)C2=CC=C(C=C2)C(=O)F -1 

2719-27-9 C1CCC(CC1)C(=O)Cl -1 

27485-15-0 C1=CC=C2C(=C1)C(=O)C3=CC(=C(C=C3C2=O)C(=O)O)C(=O)O -1 

2834-92-6 C1=CC=C2C(=C1)C=CC(=C2N)O -1 

2872-48-2 COC1=C(C2=C(C(=C1)N)C(=O)C3=CC=CC=C3C2=O)N -1 

28736-42-7 C1=CC=C2C(=C1)C(=O)C3=C(C=CC(=C3C2=O)F)F -1 

2958-36-3 C1=CC=C(C(=C1)C(=O)C2=C(C=CC(=C2)Cl)N)Cl  -1 

299914-63-9 C1=CC(=CC=C1C(=C(C2=CC=C(C=C2)I)C3=CC=C(C=C3)I)C4=CC=C(C=C4)I)I  -1 

3029-32-1 C1=CC=C2C=C3C(=CC2=C1)C(=O)C4=CC5=CC=CC=C5C=C4C3=O -1 

30379-58-9 C1=CC=C(C=C1)COC(=O)CO -1 

3096-56-8 C1=CC=C2C(=C1)C3=C(C2=O)C=C(C=C3)Br -1 

3147-58-8 C1=CC=C2C(=C1)C=C(C(=C2O)C(=O)O)O -1 

31519-22-9 C1=CC=C2C(=C1)C(=CC(=C2O)C(=O)O)O -1 

31574-87-5 C1=CC2=C(C=C1Br)C3=C(S2)C=CC(=C3)Br -1 
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318-98-9 CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O.Cl  -1 

320-51-4 C1=CC(=C(C=C1N)C(F)(F)F)Cl -1 

321-60-8 C1=CC=C(C=C1)C2=CC=CC=C2F -1 

3236-71-3 C1=CC=C2C(=C1)C3=CC=CC=C3C2(C4=CC=C(C=C4)O)C5=CC=C(C=C5)O -1 

32795-84-9 C1=CC=C2C(=C1)C=CC3=C(C4=CC=CC=C4C=C32)Br -1 

333432-28-3 B(C1=CC2=C(C=C1)C3=CC=CC=C3C2(C)C)(O)O -1 

3380-34-5 C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl  -1 

3405-77-4 CC1=CC(=NO1)C(=O)O -1 

34316-15-9 C[N+]1=C2C(=C3C=CC(=C(C3=C1)OC)OC)C=CC4=CC5=C(C=C42)OCO5  -1 

34941-90-7 C1=CN=C(C=C1F)F -1 

34993-56-1 C#CC1=C2C=CC3=CC=CC4=C3C2=C(C=C4)C=C1  -1 

35438-63-2 C1=CC2=C3C(=C1)C4=C5C(=C(C=C4)C=O)C=CC=C5C3=CC=C2  -1 

35825-57-1 CC1COC2=C1C(=O)C(=O)C3=C2C=CC4=C3CCCC4(C)C 1 

360-03-2 C1=CC=C(C=C1)C(C(=O)O)(F)F -1 

360-97-4 C1=NC(=C(N1)C(=O)N)N -1 

3641-13-2 C1(=NC(=NN1)N)C(=O)O -1 

367-21-5 C1=CC(=C(C=C1N)Cl)F -1 

371-40-4 C1=CC(=CC=C1N)F -1 

3737-95-9 C1=CC=C2C(=C1)C=C(C(=C2N=NC3=C(C=C(C4=CC=CC=C43)S(=O)(=O)O)O)O)C(=O)O -1 

3905-64-4 CC(C)(C)C1=CC2=C(C=C1)C=C(C=C2)C(C)(C)C -1 

3910-35-8 CC1(CC(C2=CC=CC=C21)(C)C3=CC=CC=C3)C -1 

3920-79-4 C1=CC=C(C=C1)NC2=CC3=CC=CC=C3C4=CC=CC=C42  -1 

39215-21-9 C1=CC=C2C(=C1)C=C(C(=C2C3=C(C(=CC4=CC=CC=C43)O)O)O)O -1 

3934-20-1 C1=CN=C(N=C1Cl)Cl -1 

3963-95-9 CN(C)C1C2C(C3C(=C)C4=C(C(=CC=C4)O)C(=C3C(=O)C2(C(=C(C1=O)C(=O)N)O)O)O)O.Cl  -1 

39674-97-0 CC1(C2=C(C3=CC=CC=C3C(=O)C2=O)NC1=O)C -1 

402-43-7 C1=CC(=CC=C1C(F)(F)F)Br -1 

40291-26-7 C1CC(=O)N(C1C(=O)ON2C(=O)CCC2=O)C(=O)OCC3=CC=CC=C3  -1 

42019-78-3 C1=CC(=CC=C1C(=O)C2=CC=C(C=C2)Cl)O -1 

42823-46-1 C1=CC(=CC=C1C(=O)O)N=C(N)N.Cl -1 

42924-53-8 CC(=O)CCC1=CC2=C(C=C1)C=C(C=C2)OC -1 

434-45-7 C1=CC=C(C=C1)C(=O)C(F)(F)F -1 

434-64-0 C1(=C(C(=C(C(=C1F)F)F)F)F)C(F)(F)F -1 

434-85-5 C1=CC=C2C(=C1)C(=C3C4=CC=CC=C4C(=O)C5=CC=CC=C53)C6=CC=CC=C6C2=O -1 

434-90-2 C1(=C(C(=C(C(=C1F)F)F)F)F)C2=C(C(=C(C(=C2F)F)F)F)F -1 

443-69-6 C1=CC2=C(C=C1F)C(=O)C(=O)N2 -1 

4487-59-6 C1=CC(=NC=C1[N+](=O)[O-])Br -1 

4548-45-2 C1=CC(=NC=C1[N+](=O)[O-])Cl -1 

455-14-1 C1=CC(=CC=C1C(F)(F)F)N -1 

456-24-6 C1=CC(=NC=C1[N+](=O)[O-])F -1 

4569-45-3 CC1(C2=CC=CC=C2C3=CC=CC=C31)C -1 

4630-82-4 COC(=O)C1CCCCC1 -1 

4674-50-4 CC1CC(=O)C=C2C1(CC(CC2)C(=C)C)C -1 
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467-69-6 C1=CC=C2C(=C1)C3=CC=CC=C3C2(C(=O)O)O -1 

470-17-7 CC12CCCC(=C)C1CC3C(C2)OC(=O)C3=C -1 

475-38-7 C1=CC(=C2C(=O)C=CC(=O)C2=C1O)O -1 

475-71-8 C1=CC=C2C(=C1)C3=NC4=C5C6=C(C=C4)C(=O)C7=CC=CC=C7C6=NC8=C5C3=C(C2=O)C=C8  -1 

476-60-8 C1=CC=C2C(=C1)C(=C3C(=CC=C(C3=C2O)O)O)O -1 

480-22-8 C1=CC2=CC3=C(C(=CC=C3)O)C(=C2C(=C1)O)O -1 

480-40-0 C1=CC=C(C=C1)C2=CC(=O)C3=C(C=C(C=C3O2)O)O -1 

480-41-1 C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC=C(C=C3)O -1 

481-06-1 CC1C2CCC3(C=CC(=O)C(=C3C2OC1=O)C)C -1 

484-17-3 C1=CC=C2C(=C1)C=C(C3=CC=CC=C23)O -1 

485-47-2 C1=CC=C2C(=C1)C(=O)C(C2=O)(O)O -1 

485-72-3 COC1=CC=C(C=C1)C2=COC3=C(C2=O)C=CC(=C3)O -1 

486-25-9 C1=CC=C2C(=C1)C3=CC=CC=C3C2=O -1 

486-66-8 C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)O)O -1 

4877-80-9 C1=C2C3=CC(=C(C=C3C4=CC(=C(C=C4C2=CC(=C1O)O)O)O)O)O -1 

491-67-8 C1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C=C(C(=C3O)O)O -1 

492-27-3 C1=CC=C2C(=C1)C(=O)C=C(N2)C(=O)O -1 

50-28-2 CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O 1 

50-32-8 C1=CC=C2C3=C4C(=CC2=C1)C=CC5=C4C(=CC=C5)C=C3  -1 

51726-83-1 C1=CC=C2C(=C1)C=CC3=C2NC=C(C3=O)C(=O)O -1 

525-82-6 C1=CC=C(C=C1)C2=CC(=O)C3=CC=CC=C3O2 -1 

529-86-2 C1=CC=C2C(=C1)C=C3C=CC=CC3=C2O -1 

530-62-1 C1=CN(C=N1)C(=O)N2C=CN=C2 -1 

53-16-7 CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O 1 

53226-42-9 C1CCC(C1)NC(=O)C2=CC=CC=C2 -1 

53348-04-2 C1=CC=C2C(=C1)C3=CC=CC=C3C(=C2N)N -1 

53348-05-3 C1=CC2=C(C=C1Br)C3=C(C=CC(=C3)Br)C(=O)C2=O -1 

534-17-8 C(=O)([O-])[O-].[Cs+].[Cs+] -1 

5350-93-6 C1=CC(=NC=C1N)Cl -1 

538-92-2 CC(C)CC1=CC=CC=C1 1 

5417-63-0 C1=CC=C2C=C(C(=CC2=C1)N)O -1 

5437-45-6 C1=CC=C(C=C1)COC(=O)CBr 1 

5451-40-1 C1=NC2=C(N1)C(=NC(=N2)Cl)Cl -1 

5468-77-9 CN(C)C(=O)CBr -1 

547-91-1 C1=CC2=C(C(=C(C=C2S(=O)(=O)O)I)O)N=C1 -1 

5521-31-3 CN1C(=O)C2=C3C(=CC=C4C3=C(C=C2)C5=C6C4=CC=C7C6=C(C=C5)C(=O)N(C7=O)C)C1=O -1 

556-90-1 C1=CC(=CC=C1C=C2C(=O)N=C(S2)N)O -1 

5625-67-2 C1CNC(=O)CN1 -1 

56-45-1 C(C(C(=O)O)N)O -1 

56752-35-3 C1=CC2=C3C(=C1)C(=CC=C3C4=C5C2=CC=C(C5=CC=C4)Br)Br  -1 

568-72-9 CC1=COC2=C1C(=O)C(=O)C3=C2C=CC4=C3CCCC4(C)C -1 

571-60-8 C1=CC=C2C(=C1)C(=CC=C2O)O -1 

572-83-8 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C=C(C=C3)Br -1 



 S17 

574-09-4 CCOC(C1=CC=CC=C1)C(=O)C2=CC=CC=C2 -1 

57486-69-8 COC(=O)CC1=CC=CC=C1Br 1 

57-63-6 CC12CCC3C(C1CCC2(C#C)O)CCC4=C3C=CC(=C4)O 1 

58-14-0 CCC1=C(C(=NC(=N1)N)N)C2=CC=C(C=C2)Cl  -1 

58-63-9 C1=NC2=C(C(=O)N1)N=CN2C3C(C(C(O3)CO)O)O 1 

59-67-6 C1=CC(=CN=C1)C(=O)O -1 

59721-16-3 CN(C)C(=O)COC(=O)CC1=CC=C(C=C1)O -1 

602-25-5 C1=CC=C2C(=C1)C(=O)C3=C(C=CC(=C3C2=O)Cl)Cl  -1 

605-32-3 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C=C(C=C3)O -1 

605-55-0 C1=CC=C2C(=C1)C=CC3=C2C=CC(=C3)O -1 

607-68-1 C1=CC=C2C(=C1)C(=NC(=N2)Cl)Cl  -1 

608-31-1 C1=CC(=C(C(=C1)Cl)N)Cl -1 

610-49-1 C1=CC=C2C=C3C(=CC2=C1)C=CC=C3N -1 

612-78-2 C1=CC=C2C=C(C=CC2=C1)C3=CC4=CC=CC=C4C=C3  -1 

613-13-8 C1=CC=C2C=C3C=C(C=CC3=CC2=C1)N -1 

6217-22-7 C1=CC2=C3C(=C1)C(=O)C(=O)C4=CC=CC(=C43)C=C2  -1 

622-31-1 C1=CC=C(C=C1)C=NO -1 

6223-83-2 C1=CC=C2C(=C1)C3=C(C2=O)C=CC=C3C(=O)O -1 

622-62-8 CCOC1=CC=C(C=C1)O -1 

623-00-7 C1=CC(=CC=C1C#N)Br -1 

632-83-7 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)Br -1 

635-12-1 C1=CC=C2C=C3C(=O)C=CC(=O)C3=CC2=C1 -1 

6364-19-8 C1=CC2=C3C(=C1)C(=CC=C3C4=C5C2=CC=C(C5=CC=C4)C(=O)O)C(=O)O -1 

6398-98-7 CCN(CC)CC1=C(C=CC(=C1)NC2=C3C=CC(=CC3=NC=C2)Cl)O.O.O.Cl.Cl  -1 

644-13-3 C1=CC=C(C=C1)C(=O)C2=CC3=CC=CC=C3C=C2 -1 

6485-55-8 CC1CNCC(O1)C 1 

6485-97-8 C1=CC=C(C=C1)C2=CC3=C(C=C2)C(=O)C4=CC=CC=C4C3=O -1 

66-25-1 CCCCCC=O -1 

6674-22-2 C1CCC2=NCCCN2CC1 -1 

693-13-0 CC(C)N=C=NC(C)C -1 

708-06-5 C1=CC=C2C(=C1)C=CC(=C2C=O)O -1 

7087-68-5 CCN(C(C)C)C(C)C 1 

71125-38-7 CC1=CN=C(S1)NC(=O)C2=C(C3=CC=CC=C3S(=O)(=O)N2C)O -1 

7153-22-2 CCOC(=O)C1=CC=C(C=C1)C#N -1 

719-59-5 C1=CC=C(C=C1)C(=O)C2=C(C=CC(=C2)Cl)N -1 

72-48-0 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C=C3)O)O -1 

7254-19-5 C1=CC2=C(C=C1Br)C=C(N2)C(=O)O -1 

7323-62-8 CC(=O)NC1=C2C(=C(C=C1)O)C(=O)C3=CC=CC=C3C2=O -1 

7427-09-0 CC1=C(C(=O)C2=CC=CC=C2C1=O)N -1 

7473-98-5 CC(C)(C(=O)C1=CC=CC=C1)O -1 

7601-89-0 [O-]Cl(=O)(=O)=O.[Na+] -1 

762-72-1 C[Si](C)(C)CC=C 1 

7632-00-0 N(=O)[O-].[Na+] -1 
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7649-92-5 C1=CC=C(C(=C1)C(=O)C2=CC=C(C=C2)F)C(=O)O -1 

765-30-0 C1CC1N -1 

76-83-5 C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3)Cl  -1 

771-97-1 C1=CC=C2C=C(C(=CC2=C1)N)N -1 

773-76-2 C1=CC2=C(C(=C(C=C2Cl)Cl)O)N=C1 -1 

773873-77-1 COC(=O)C1=CNC2=C1C=C(C=C2)Br -1 

807-19-2 C1=CC(=CC=C1C(=O)O)P(=O)(C2=CC=C(C=C2)C(=O)O)C3=CC=C(C=C3)C(=O)O -1 

808-57-1 COC1=C(C=C2C(=C1)C3=CC(=C(C=C3C4=CC(=C(C=C24)OC)OC)OC)OC)OC -1 

81-32-3 C1=CC(=C2C(=CC=C3C2=C1C4=C5C3=CC=C(C5=C(C=C4)C(=O)O)C(=O)O)C(=O)O)C(=O)O -1 

81-33-4 C1=CC2=C3C(=CC=C4C3=C1C5=C6C4=CC=C7C6=C(C=C5)C(=O)NC7=O)C(=O)NC2=O -1 

81-41-4 C1=CC=C2C(=C1)C(=O)C3=C(C(=C(C(=C3C2=O)N)C#N)C#N)N -1 

81-42-5 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C(=C3N)Cl)Cl)N -1 

81-49-2 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C=C3Br)Br)N -1 

81-54-9 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=C(C=C3O)O)O -1 

81-55-0 C1=CC(=C2C(=C1[N+](=O)[O-])C(=O)C3=C(C=CC(=C3C2=O)O)[N+](=O)[O-])O -1 

81-58-3 C1=CC(=C2C(=C1Cl)C(=O)C3=C(C=CC(=C3C2=O)Cl)Cl)Cl  -1 

81-64-1 C1=CC=C2C(=C1)C(=O)C3=C(C=CC(=C3C2=O)O)O -1 

81-77-6 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C4=C(C=C3)NC5=C(N4)C=CC6=C5C(=O)C7=CC=CC=C7C6=O -1 

81-96-9 C1=CC=C2C(=C1)C3=C4C(=C(C=C3)Br)C=CC=C4C2=O -1 

82-22-4 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)NC4=CC=CC5=C4C(=O)C6=CC=CC=C6C5=O -1 

82-34-8 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)[N+](=O)[O-] -1 

82-38-2 CNC1=CC=CC2=C1C(=O)C3=CC=CC=C3C2=O -1 

82-43-9 C1=CC2=C(C(=C1)Cl)C(=O)C3=C(C2=O)C=CC=C3Cl  -1 

82-45-1 C1=CC=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)N -1 

82-46-2 C1=CC2=C(C(=C1)Cl)C(=O)C3=C(C2=O)C(=CC=C3)Cl  -1 

82717-96-2 CCOC(=O)C(CCC1=CC=CC=C1)NC(C)C(=O)O -1 

84405-44-7 C1=CC2=C(C=C1Br)C(=O)C(=O)C3=C2C=CC(=C3)Br -1 

84-47-9 CC(C)(C)C1=CC2=C(C=C1)C(=O)C3=CC=CC=C3C2=O -1 

84-60-6 C1=CC2=C(C=C1O)C(=O)C3=C(C2=O)C=C(C=C3)O -1 

85721-33-1 C1CC1N2C=C(C(=O)C3=CC(=C(C=C32)N4CCNCC4)F)C(=O)O -1 

865-47-4 CC(C)(C)[O-].[K+] -1 

86636-92-2 CN(C)C1=CC2=C(C=C1)C=C(C=C2)C(=O)C=C -1 

870259-02-2 C#CC1=CC(=C2C=CC3=C(C=C(C4=C3C2=C1C=C4)C#C)C#C)C#C -1 

870774-29-1 B(C1=CC(=CC=C1)C2=CC3=CC=CC=C3C=C2)(O)O -1 

872050-52-7 B(C1=CC=C(C=C1)C2=C3C=CC4=CC=CC5=C4C3=C(C=C5)C=C2)(O)O -1 

87-42-3 C1=NC2=C(N1)C(=NC=N2)Cl -1 

88-17-5 C1=CC=C(C(=C1)C(F)(F)F)N -1 

882-09-7 CC(C)(C(=O)O)OC1=CC=C(C=C1)Cl -1 

883835-33-4 C1=CC(=CC=C1C=O)C2=CC(=C(C=C2C3=CC=C(C=C3)C=O)C4=CC=C(C=C4)C=O)C5=CC=C(C=C5)C=O -1 

88426-33-9 CC(C)(C)C1CCC(CC1)CC2=C(C3=CC=CC=C3C(=O)C2=O)O 1 

90-15-3 C1=CC=C2C(=C1)C=CC=C2O -1 

90299-04-0 CC(C)(C1=CC2=CC=CC=C2C=C1)N -1 

90-43-7 C1=CC=C(C=C1)C2=CC=CC=C2O -1 
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90-47-1 C1=CC=C2C(=C1)C(=O)C3=CC=CC=C3O2 -1 

92149-07-0 COC1=C2C=CC3=C(C=CN=C3C2=NC=C1)OC -1 

92-44-4 C1=CC=C2C=C(C(=CC2=C1)O)O -1 

92-66-0 C1=CC=C(C=C1)C2=CC=C(C=C2)Br -1 

927-58-2 C(CC(=O)Cl)CBr -1 

93655-34-6 COC(=O)C1=CC=CC2=CC3=C(C=C21)C(=CC=C3)C(=O)OC -1 

93-92-5 CC(C1=CC=CC=C1)OC(=O)C -1 

939-97-9 CC(C)(C)C1=CC=C(C=C1)C=O -1 

947-73-9 C1=CC=C2C(=C1)C=C(C3=CC=CC=C23)N -1 

95233-18-4 C1CC(CCC1C2=CC=C(C=C2)Cl)C3=C(C4=CC=CC=C4C(=O)C3=O)O -1 

95-51-2 C1=CC=C(C(=C1)N)Cl -1 

957-68-6 CC(=O)OCC1=C(N2C(C(C2=O)N)SC1)C(=O)O -1 

959085-68-8 C1CC(C1)OC(=O)C2=CC=C(C=C2)C(F)(F)F -1 

98-16-8 C1=CC(=CC(=C1)N)C(F)(F)F -1 

99548-54-6 CC1=C(C=CC=C1Br)C(=O)OC -1 

99614-02-5 CC1=NC=CN1CC2CCC3=C(C2=O)C4=CC=CC=C4N3C 1 

99-90-1 CC(=O)C1=CC=C(C=C1)Br -1 

99-92-3 CC(=O)C1=CC=C(C=C1)N -1 
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Section S3. Semantic Literature Analysis 

S3.1. Dataset Curation 

To build a targeted reaction dataset for training machine learning models, we employ semantic 

literature analysis to identify suitable publications based on human-defined criteria. This approach 
allows for highly customizable searches, tailored to specific reaction descriptions, which are often 

difficult to capture using traditional database queries. Traditional database queries, while effective 
for broad searches, often struggle with specificity. For instance, selecting reactions labeled as 
"electrochemical" is feasible, but pinpointing electrochemical oxidation on aliphatic carbons 

presents significant challenges. Importantly, large language models LLMs can be customized to 
meet specific research needs. For niche areas of chemistry, LLMs can prioritize pertinent 

information more effectively than traditional queries and natural language processing methods, 
which may have limitations in search algorithms and data categorization. Furthermore, LLMs allow 
chemists to define criteria in everyday language, minimizing the need for extensive coding 

expertise. We began by broadly identifying potential publications using keyword searches. In this 
study, our focus was on compiling a dataset for electrochemical C-H oxidation with a mediator. 

We initiated our search on the Web of Science using the keywords "Electrochemical," "C-H 
oxidation," and "Hydrogen atom transfer," yielding an initial list of 140 publications. The selected 
papers for this study, along with their DOIs, publication years, and titles, are detailed in Table S4.  

However, simple keyword searches often include literature that does not meet specific criteria. For 
example, computational studies without any synthesis or other types of electrochemical reactions 

might be included. Manually filtering through each publication is challenging and time-consuming. 
Therefore, the primary purpose of using LLMs for semantic analysis is to create a customizable 
filter that can efficiently process large corpora of text. LLMs consider all aspects discussed in the 

manuscripts, including reactions, analyses, and discussions, to determine if a paper meets the 
defined criteria, providing a "yes" or "no" answer. For highly specific reactions, the final number 
of relevant manuscripts is typically small. LLMs expedite the identification process by quickly 

eliminating unsuitable papers, saving time, and enhancing accuracy. In this study, we downloaded 
all manuscripts in PDF format following the guidelines and permissions outlined in the agreement 

between MIT and the publishers. Data handling was conducted through an API, ensuring the 
content of the papers remained private to the models and that conversation history was not stored 
elsewhere for training purposes. The full information of all the papers can be found on the 

Spreadsheet SF1. Literature Screening Dataset in the Supporting Information. 

 

Figure S11. Overview of the key steps in reaction data mining assisted by the LLM. 
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Table S3. List of publishers, and the associated DOI prefix, along with the number of publications 
used for the dataset generation. 

Publishers Prefix Count 

Wiley 10.1002 32 

Springer 10.1007, 10.1134 6 

Elsevier 10.1016 21 

ACS 10.1021 50 

Nature 10.1038 4 

RSC 10.1039 16 

Thieme 10.1055 3 

J-STAGE 10.1248 3 

Other publishers 10.1070, 10.3390, 10.3866, 10.6023 5 

 

 

 

 

Figure S12. Statistics on the distribution of the publications from different publishers. 
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Table S4. Title of papers, the associated DOI number, along with publication years. 

DOI Number Title Year 

10.1002/tcr.202300331 
Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic 
Depolymerization 2023 

10.1002/ejoc.202300835 

Electrochemical Coupling Reactions Using Non-Transition Metal Mediators: 

Recent Advances 2023 

10.1021/jacs.3c09907 
Selective Electrochemical Oxidation of Benzylic C-H to Benzylic Alcohols with 
the Aid of Imidazolium Radical Mediators 2023 

10.1021/acs.orglett.3c02668 HAT-Mediated Electrochemical C(sp2)-H Acylation of Quinolines with Alcohols 2023 

10.1021/jacs.3c06477 

Competition between C-C and C-H Bond Fluorination: A Continuum of Electron 

Transfer and Hydrogen Atom Transfer Mechanisms 2023 

10.1002/anie.202310138 
Continuous Flow Electrochemistry Enables Practical and Site-Selective C-H 
Oxidation 2023 

10.1021/acs.orglett.3c03036 Dehalogenative Arylation of Unactivated Alkyl Halides via Electroreduction  2023 

10.1002/anie.202310072 Organocatalytic C-H Functionalization of Simple Alkanes 2023 

10.1039/d3gc02153j 

Electrochemical cascade sequences for remote C7-H bond thiocyanation of 

quinoxalin-2(1H)-ones with ammonium thiocyanate 2023 

10.1002/cjoc.202300288 Chloride-Promoted Photoelectrochemical C-H Silylation of Heteroarenes 2023 

10.1002/adsc.202300644 
HAT-Mediated Electrochemical Cross Dehydrogenative Coupling Reaction of 
Quinoxalin-2(1H)-ones with Ethers 2023 

10.1002/adsc.202300412 

Hypervalent Halogen Compounds in Electrochemical Reactions: Advantages 

and Prospects 2023 

10.1021/acscatal.3c01221 
Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for 
C(sp3)/Si-H Functionalization and Hydrofunctionalization of Alkenes 2023 

10.1016/j.envpol.2023.121987 

Degradation pathways of atrazine by electrochemical oxidation at different 
current densities: Identifications from compound-specific isotope analysis and 
DFT calculation 2023 

10.1002/adsc.202300360 

Selective C-H Acyloxylation of Sulfides/Disulfides Enabled by Hypervalent 

Iodine Reagents 2023 

10.1016/j.tetlet.2023.154483 N-Heterocyclic carbene-catalyzed remote C(sp3)-H acylation of amides 2023 

10.1016/j.checat.2023.100582 
Using a nitrogen-centered radical as a selective mediator in electrochemical 
C(sp3)-H amination 2023 

10.1002/cctc.202300009 

Regioselective Reduction of NAD+ to 1,4-NADH with a Bioinspired Metal 

Sulfide Electrocatalyst 2023 

10.1021/acs.inorgchem.2c04168 
Structural and Spectroscopic Characterization of Copper(III) Complexes and 
Subsequent One-Electron Oxidation Reaction and Reactivity Studies 2023 

10.1002/adsc.202201395 

HAT-Promoted Electrochemical Amination: C(sp2)-H/N-H Cross 

Dehydrogenative Coupling  2023 

10.1007/s40242-023-2323-y Solvent-dependence of KI Mediated Electrosynthesis of Imidazo[1,2-a]pyridines 2023 

10.1016/j.checat.2022.100491 Copper-catalyzed electrochemical C-H fluorination 2023 

10.1038/s41586-022-05667-0 Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations 2023 

10.1055/a-1992-7066 
Electrochemical Benzylic C(sp 3 )-H Amidation via Ritter-Type Reaction in the 
Absence of External Mediator and Oxidant 2023 

10.1021/acs.jpcc.2c07736 

Methane to Methanol Conversion over N-Doped Graphene Facilitated by 

Electrochemical Oxygen Evolution: A First-Principles Study 2023 

10.1021/acs.joc.2c02363 
Direct Hydroxylarylation of Benzylic Carbons (sp3/sp2/sp) via Radical -Radical 
Cross-Coupling Powered by Paired Electrolysis 2023 

10.1039/d2qo01498j 
NHPI-catalyzed electrochemical C-H alkylation of indoles with alcohols to 
access di(indolyl)methanes via radical coupling  2022 

10.1016/j.apsadv.2022.100319 
Influence of temperature, surface composition and electrochemical environment 
on 2-propanol decomposition at the Co3O4 (001)/ H2O interface 2022 

10.1016/j.jelechem.2022.116835 
Electrochemical quinuclidine-mediated C-H activation: Intermediates and 
mechanism 2022 

10.1021/acscatal.2c03424 A Horseradish Peroxidase-Mediator System for Benzylic C-H Activation 2022 

10.1002/anie.202210201 
Metal-Free Electrochemical Carboxylation of Organic Halides in the Presence 
of Catalytic Amounts of an Organomediator 2022 

10.1002/cctc.202200830 
How to Harness Electrochemical Mediators for Photocatalysis - A Systematic 
Approach Using the Phenanthro[9,10-d]imidazole Framework as a Test Case 2023 

10.1002/anie.202211345 Formation and Reactivity of a Fleeting NiIII Bisphenoxyl Diradical Species  2022 

10.1016/j.mcat.2022.112633 
An efficient electrochemical oxidation of C(sp3)-H bond for the synthesis of 
arylketones 2022 
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10.1021/acs.accounts.2c00444 N-O Bond Activation by Energy Transfer Photocatalysis  2022 

10.1002/ejoc.202200596 
Cross-Coupling of C-H and N-H Bonds: A Hydrogen Evolution Strategy for the 
Construction of C-N Bonds 2022 

10.1021/acs.orglett.2c01528 
Electrochemical C(sp3)-H Functionalization of γ-Lactams Based on Hydrogen 
Atom Transfer 2022 

10.1016/j.jechem.2022.03.036 
A new pathway for formic acid electro-oxidation: The electro-chemically 
decomposed hydrogen as a reaction intermediate 2022 

10.1002/chem.202104493 Sulfonyl Nitrene and Amidyl Radical: Structure and Reactivity  2022 

10.1021/jacs.1c13063 

One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to 

Imines 2022 

10.1039/d1cs00494h 
Chemical versatility of azide radical: journey from a transient species to 
synthetic accessibility in organic transformations 2022 

10.1002/cssc.202102317 

Electrochemical Activation of C-C Bonds through Mediated Hydrogen Atom 

Transfer Reactions 2022 

10.1039/d1fd00074h Electrocatalytic alcohol oxidation by a molecular iron complex  2022 

10.1016/j.tetlet.2022.153647 An electrochemical γ-C-H arylation of amines in continuous flow 2022 

10.1021/acs.chemrev.1c00374 
Photochemical and Electrochemical Applications of Proton-Coupled Electron 
Transfer in Organic Synthesis 2022 

10.1016/j.tetlet.2021.153593 

Electrochemical oxidation-induced benzyl C-H carbonylation for the synthesis 

of aromatic α-diketones 2022 

10.1055/sos-SD-126-00120 Synthesis of Ketones by Oxidation of Alkanes 2022 

10.1002/anie.202115178 Electrochemical Desaturative β-Acylation of Cyclic N-Aryl Amines 2022 

10.1021/jacs.1c07983 
An Expanded SET Model Associated with the Functional Hindrance Dominates 
the Amide-Directed Distal sp3 C-H Functionalization 2021 

10.1002/chem.202103384 

Expedient Access to Cyanated N-Heterocycles by Direct Flow-Electrochemical 

C(sp2)-H Activation 2022 

10.6023/cjoc202106001 Applications of Proton-Coupled Electron Transfer in Organic Synthesis  2021 

10.1021/jacs.1c08671 
TEMPO-Enabled Electrochemical Enantioselective Oxidative Coupling of 
Secondary Acyclic Amines with Ketones 2021 

10.1021/jacs.1c06473 
Electrochemical Borylation of Alkyl Halides: Fast, Scalable Access to Alkyl 
Boronic Esters 2021 

10.1002/celc.202100784 TEMPO-Mediated Electrochemical N-demethylation of Opiate Alkaloids 2021 

10.1038/s41467-021-24203-8 
Electrochemical activation of C-H by electron-deficient W2C nanocrystals for 
simultaneous alkoxylation and hydrogen evolution  2021 

10.1021/acs.organomet.1c00188 
Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, 
Stability, and Carbon-Hydrogen Bond Activations 2021 

10.1021/jacs.1c03780 N-Ammonium Ylide Mediators for Electrochemical C-H Oxidation 2021 

10.1021/jacs.1c02103 
Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan-
Lam Coupling Reactions 2021 

10.1002/anie.202012707 Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer 2021 

10.1039/d0ob02444a 
Peroxide- and transition metal-free electrochemical synthesis of α,β -epoxy 
ketones 2021 

10.1002/ejic.202000955 Dirhodium(II,II) Paddlewheel Complexes 2021 

10.1002/anie.202010437 
Selective Electrochemical Hydrolysis of Hydrosilanes to Silanols via Anodically 
Generated Silyl Cations 2021 

10.1039/d0sc03616a 
Oxoiron(v) mediated selective electrochemical oxygenation of unactivated C-H 
and Cxe001;C bonds using water as the oxygen source 2020 

10.3390/catal10090982 Recent Advances in Asymmetric Catalytic Electrosynthesis  2020 

10.1039/d0gc01324b 
Electrifying green synthesis: recent advances in electrochemical annulation 
reactions 2020 

10.1002/anie.201913767 Synthetic Photoelectrochemistry 2020 

10.1021/jacs.0c01032 

Determining Proton-Coupled Standard Potentials and X-H Bond Dissociation 
Free Energies in Nonaqueous Solvents Using Open -Circuit Potential 
Measurements 2020 

10.1039/d0sc01898h 
Carboxylate breaks the arene C-H bond via a hydrogen-atom-transfer 
mechanism in electrochemical cobalt catalysis 2020 

10.1021/acs.inorgchem.9b03767 
Catalytic C-H Bond Oxidation Using Dioxygen by Analogues of Heme 
Superoxide 2020 

10.1021/acscatal.0c00897 

Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an 
Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound I 
Type Oxidants 2020 



 S24 

10.1002/anie.202001149 
Electrochemical Synthesis of Thienoacene Derivatives: Transition -Metal-Free 
Dehydrogenative C-S Coupling Promoted by a Halogen Mediator 2020 

10.1021/acs.accounts.9b00544 

Electrochemical Oxidation of Organic Molecules at Lower Overpotential: 
Accessing Broader Functional Group Compatibility with Electron -Proton 

Transfer Mediators 2020 

10.1021/acs.accounts.9b00603 
Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry 
and Transition Metal Catalysis 2020 

10.1021/jacs.9b11472 Electrophotocatalytic C-H Functionalization of Ethers with High Regioselectivity 2020 

10.1021/acs.inorgchem.9b02080 Conducting Coronene Cation Radical Salt Containing Magnetic Metal Ions  2019 

10.1002/anie.201903902 
O-O Bond Formation and Liberation of Dioxygen Mediated by N5-Coordinate 
Non-Heme Iron(IV) Complexes 2019 

10.1021/acs.inorgchem.9b00247 
cis Donor Influence on O-O Bond Lability in Iron(III) Hydroperoxo Complexes: 
Oxidation Catalysis and Ligand Transformation  2019 

10.1021/acscatal.9b01394 
Catalyst-Controlled C-H Functionalization of Adamantanes Using Selective H-
Atom Transfer 2019 

10.1002/chem.201806092 
Electrochemical and Scalable Dehydrogenative C(sp3)-H Amination via 
Remote Hydrogen Atom Transfer in Batch and Continuous Flow 2019 

10.1002/anie.201813960 
Merging Photochemistry with Electrochemistry: Functional -Group Tolerant 
Electrochemical Amination of C(sp3)-H Bonds 2019 

10.1021/acscatal.9b00287 Visible Light Uranyl Photocatalysis: Direct C-H to C-C Bond Conversion 2019 

10.1021/jacs.8b08460 
Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a 
β-Agostic Ethyl: Structure, Dynamics and Mechanism 2018 

10.1002/anie.201809611 
Iridium-Catalyzed Electrooxidative C-H Activation by Chemoselective Redox-
Catalyst Cooperation 2018 

10.1021/jacs.8b07380 

Copper-Catalyzed Electrochemical C-H Amination of Arenes with Secondary 

Amines 2018 

10.1038/s41467-018-06020-8 
Dehydrogenative reagent-free annulation of alkenes with diols for the synthesis 
of saturated O-heterocycles 2018 

10.1002/elan.201800147 

Electrochemically Driven C-H Hydrogen Abstraction Processes with the 

Tetrachloro-Phthalimido-N-Oxyl (Cl4PINO) Catalyst 2018 

10.1055/s-0036-1591558 
Organocatalytic Electrochemical C-H Lactonization of Aromatic Carboxylic 
Acids 2018 

10.1039/c8ob00063h Recent advances in iodine mediated electrochemical oxidative cross-coupling 2018 

10.1039/c7sc05224c 

cis-Oxoruthenium complexes supported by chiral tetradentate amine (N4) 

ligands for hydrocarbon oxidations 2018 

10.1039/c7sc04032f 
Selective electrochemical generation of benzylic radicals enabled by ferrocene-
based electron-transfer mediators 2018 

10.1021/jacs.7b09744 

&ITN&IT-Hydroxyphthalimide-Mediated Electrochemical Iodination of 

Methylarenes and Comparison to Electron -Transfer-Initiated C-H 
Functionalization 2018 

10.1021/acs.joc.7b01686 
Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent 
Iodine 2017 

10.1007/s11696-017-0201-0 
Manganese(II) complexes with Bn-tpen as powerful catalysts of cyclohexene 
oxidation 2017 

10.1021/acs.accounts.7b00343 

Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom 

Transfer Reactions 2017 

10.1016/j.jmgm.2017.08.016 
Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: A 
comparative DFT study 2017 

10.1016/j.molstruc.2017.05.044 

Synthesis, characterization, crystal structure and electrochemical studies of 

ionic iron(III) dipicolinato complex 2017 

10.1016/j.jelechem.2017.04.031 

Electrochemical and electron paramagnetic resonance study of the mechanism 
of oxidation of 2,3,5,6-tetra-Me-pyrazine-di-N-oxide as a mediator of 
electrocatalytic oxidation of isopropyl alcohol at glassy carbon and single-

walled carbon nanotube electrodes 2017 

10.1021/jacs.7b03539 Scalable, Electrochemical Oxidation of Unactivated C-H Bonds 2017 

10.1021/acs.inorgchem.7b00448 
Spectroscopic and Reactivity Comparisons of a Pair of bTAML Complexes with 
FeV=O and FeIV=O Units 2017 

10.1021/jacs.6b13091 Fast Hydrogen Atom Abstraction by a Hydroxo Iron(III) Porphyrazine 2017 

10.1021/jacs.6b08406 

Tuning the Reactivity of Terminal Nickel(III)-Oxygen Adducts for C-H Bond 

Activation 2016 

10.1038/nature17431 Scalable and sustainable electrochemical allylic C-H oxidation 2016 

10.1021/jp5109366 

Combining Nanosecond and Millisecond Time Scale Techniques: 
Determination of Thermodynamic and Kinetic data of Primary Alkyl Amine 

Cation Radicals 2015 
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10.1039/c5dt00863h Iridium-based complexes for water oxidation 2015 

10.1016/j.electacta.2014.08.039 

Electrochemical and Electron Paramagnetic Resonance Study of the 
Mechanism of Oxidation of Phenazine-di-N-oxide in the Presence of Isopropyl 
alcohol at Glassy Carbon and Single-Walled Carbon Nanotube Electrodes 2014 

10.1016/j.electacta.2014.07.105 

A comparative study of organic electron transfer redox mediators: electron 

transfer kinetics for triarylimidazole and triarylamine mediators in the oxidation 
of 4-methoxybenzyl alcohol 2014 

10.1021/om401225r Homogeneous Catalysis and Selectivity in Electrochemistry  2014 

10.1021/ic500943k 

Saturation Kinetics in Phenolic O-H Bond Oxidation by a Mononuclear Mn(III)-

OH Complex Derived from Dioxygen  2014 

10.1021/ja505136j 
Direct, Catalytic Monofluorination of sp3 C-H Bonds: A Radical-Based 
Mechanism with Ionic Selectivity 2014 

10.1134/S1023193514010066 

Electrochemical and ESR Study of the Mechanism of Oxidation of Phenazine-

di-N-oxide in the Presence of Cyclohexanol on Glassy Carbon and Single-
Walled Carbon Nanotube Electrodes 2014 

10.1002/adsc.201300502 
Efficient Indirect Electrochemical Synthesis of 2-Substituted Benzoxazoles 
using Sodium Iodide as Mediator 2013 

10.1039/c2sc21318d 
Nonheme oxoiron(IV) complexes of pentadentate N5 ligands: spectroscopy, 
electrochemistry, and oxidative reactivity 2013 

10.1134/S1023193512040088 
Electrochemical and ESR studies of the oxidation mechanism of pyrazine-di-N-
oxides in the presence of methanol and its deuterated derivatives  2012 

10.1021/ic202462a 
Platinum(II) Diimine Complexes with Halide/Pseudohalide Ligands and 
Dangling Trialkylamine or Ammonium Groups 2012 

10.1021/ol300195c 

Novel Triarylimidazole Redox Catalysts: Synthesis, Electrochemical Properties, 

and Applicability to Electrooxidative C-H Activation 2012 

10.1021/ja211005g 
Efficient Anodic and Direct Phenol-Arene C,C Cross-Coupling: The Benign 
Role of Water or Methanol 2012 

10.1039/c0ob01257b 

One-electron oxidation of ferrocenes by short-lived N-oxyl radicals. The role of 

structural effects on the intrinsic electron transfer reactivities  2011 

10.3866/PKU.WHXB20100925 
Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with 
Amines, Phenols and Alcohols 2010 

10.1134/S1023193510090119 

Electrochemical and ESR studies of tert-butanol oxidation mechanism in the 

presence of radical cations pyrazine-di-N-oxide and its substituted derivatives 
as mediators 2010 

10.1021/ja909923w 
Redox Potential and C-H Bond Cleaving Properties of a Nonheme FeIV=O 
Complex in Aqueous Solution 2010 

10.1016/j.matchemphys.2008.12.0
33 

The electron transfer behavior of the hydrogen -terminated boron-doped 
diamond film electrode 2009 

10.1016/j.ica.2007.10.053 
Complexes of oxomethoxovanadium(V) with tridentate thiobenzhydrazide 
based Schiff bases 2008 

10.1002/chem.200801615 
Intervalent Bis(μ-aziridinato)MII-MI Complexes (M = Rh, Ir): Delocalized 
Metallo-Radicals or Delocalized Aminyl Radicals? 2008 

10.1134/S1023193507110031 

Electrochemical and ESR-study of the mechanism of organic compound 

oxidation in the presence of mediators-Radical cations of substituted pyrazin-di-
N-oxydes 2007 

10.1021/ic062206s 

Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with 
cis,cis-1,3,5-triaminocyclohexane derivatives:: A Cu(III)2O2 intermediate 

exhibiting higher C-H activation 2007 

10.1002/chem.200500814 

Hydrocarbon oxidation by β-halogenated dioxoruthenium(VI) porphyrin 
complexes:: Effect of reduction potential (RuVI/V) and C-H bond-dissociation 
energy on rate constants 2005 

10.1039/b507657a 
New mediators for the enzyme laccase: mechanistic features and selectivity in 
the oxidation of non-phenolic substrates 2005 

10.1016/S1381-1177(03)00014-6 
Free radical versus electron-transfer routes of oxidation of hydrocarbons by 
laccase/mediator systems catalytic or stoichiometric procedures  2003 

10.1021/om020621w C-H oxidative addition with a (PCP)Ir(III)-pincer complex 2002 

10.1016/S0013-4686(02)00448-6 
Electrochemical and ESR study of the C-H bond activation. Electrocatalytical 
oxidation with participation of radical cation of phenazine-di-N-oxide 2002 

10.1070/rc2002v071n03abeh0007

04 Electrochemical activation of reactions involving organometallic compounds  2002 

10.1021/ja000193q 
Oxidative single-electron transfer activation of σ-bonds in aliphatic halogenation 
reactions 2000 

10.1021/jo991467z 

Molecular meccano - Part 58 - The electrochemically-driven 

decomplexation/recomplexation of inclusion adducts of ferrocene derivatives 
with an electron-accepting receptor 2000 
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10.1016/S0022-0728(98)00206-X 
Electrochemical reduction of acids in dimethyl sulfoxide. Comparison of weak 
C-H, N-H and O-H acids 1998 

10.1016/0304-5102(93)E0230-E Electrocatalytic functionalization of alkanes using aqueous platinum salts  1994 

10.1248/cpb.34.975 
Anodic-oxidation of amides and lactams using N-hydroxyphthalimide as a 
mediator 1986 

10.1248/cpb.33.4798 Electrochemical oxidation of olefins using N-hydroxyphthalimide as a mediator 1985 

10.1248/cpb.31.4209 
Anodic-oxidation of compounds having benzylic or allylic carbon and alpha-
carbon to hetero atom using N-hydroxyphthalimide as a mediator 1983 

10.1039/c39830000479 

N-hydroxyphthalimide as an effective mediator for the oxidation of alcohols by 

electrolysis 1983 

  

 
 

 
 

 
 

Figure S13. Statistics on the length of manuscripts for data mining. The manuscripts can be 

classified into two main categories: shorter communication-style manuscripts and longer full 
articles. The average word count for communication-style manuscripts, depicted by the purple 
dashed line, is 2297 words. In contrast, the average word count for full articles, indicated by the 

green dashed line, is 4743 words. The supporting information associated with these manuscripts is 
not included in this analysis. The overall average word count for all manuscripts is 3665 words, 

represented by the red dashed line.   
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S3.2. Prompt Engineering 

 

Figure S14. A representative zero-shot conversation using the gpt-4o backbone model, tasked with 

classifying the content of a paper based on user-defined criteria. The full manuscript text was 
converted to plain text and presented following this prompt. The LLM was provided with a template 

answer and asked to generate a structured output. The prompt was crafted by a human using 
previously described principles and techniques.3–5 It was demonstrated that slight typographical 
variations in the input prompt do not significantly impact binary classification output from the LLM. 

User: Please answer the following question truthfully, based on the complete text of the literature 

provided below. 

 

Question: Does this paper report experimental findings related to the electrochemical synthesis  

conditions for aliphatic C-H oxidation reactions? 

 

Note that to answer "Yes" to this question, all three criteria must be met: (a) wet lab experimental 

electrochemical synthesis, (b) transformation from C-H to C-OH or C=O, and (c) the reaction occurs on 

aliphatic carbon. If any of these criteria are not mentioned, the overall answer should be "No." In your 

response, adhere strictly to the format below and address each part with specific references to the text:  

 

Overall Answer: {Yes/No} 

Part A: {Yes/No} 

Reasoning A: {A brief justification for this part of your answer, citing relevant sections of the paper}  

 

Part B: {Yes/No} 

Reasoning B: {A brief justification for this part of your answer, citing relevant sections of the paper}  

 

Part C: {Yes/No} 

Reasoning C: {A brief justification for this part of your answer, citing relevant sections of the paper}  

 

Make sure you consider all sentences in the manuscript and always keep the following questions in 

mind: 

Does the paper involve wet lab experimental procedures in electrochemical synthesis?  

Part A: Does the paper include experimental procedures and non-computational/non-simulation data 

in electrochemical synthesis? 

Part B: Does the paper detail C-H oxidation specifically leading to C-H bonds (alcohol) or C=O bonds 

(carbonyl) compounds? Note that coupling products where C-H becomes C-OR group do not count. 

Also note that only functionalization of C-H bonds without clear indication of C-OH or C=O bonds 

does not count. 

Part C: Is the reaction happening in aliphatic carbon? 

 

Take a deep breath and read it, consider all the expectations, analyze and give reasoning in detail step 

by step.  

 

Manuscript: 

{full text} 
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Figure S15. A representative response provided by the LLM, featuring an overall binary label 
(Yes/No) for the manuscript6 and answers for each section (A, B, C) accompanied by a paragraph 

of reasoning. This detailed explanation helps facilitate subsequent human analysis and enhances 
the understanding of the decision-making process. Note that while figures and graphs from the 

literature can be optionally incorporated into the LLM's evaluation,7,8 this study only relied on 
textual input for examining semantic analysis purposes. The complete collection of the output 
answers for all 140 manuscripts for this study is available in Spreadsheet SF1 Literature Screening 

Dataset in the Supporting Information. 

 

Figure S16. A representative response provided by the LLM, featuring an overall binary label 

(Yes/No) for the manuscript9 and answers for each section (A, B, C) accompanied by a paragraph 
of reasoning.  

Assistant: Overall Answer: Yes 

Part A: Yes 

Reasoning A: The paper discusses electrochemical methods for the selective oxidation of 

C(sp3)−C/H(sp3) bonds, which is a part of experimental electrochemical synthesis (sections: Abstract, 1 

Introduction). 

 

Part B: Yes 

Reasoning B: The paper describes the conversion of carbon-hydrogen (C−H) bonds to carbon-oxygen 

(C−O) bonds, indicating a transformation from C-H to C-OH or C=O. This is evident in several sections, 

including the Abstract and the Introduction, where C−H oxygenation and the production of aldehydes 

and ketones (C=O compounds) from C−H bonds are mentioned.  

 

Part C: Yes 

Reasoning C: The reactions discussed in the paper focus on the selective activation of inert 

C(sp3)−C/H(sp3) bonds, indicating that the reaction occurs on aliphatic carbon. This is stated in the 

Abstract and further elaborated in the section "Electrochemical C−H/C−C Bond Oxygenation." 

Assistant: Overall Answer: No 

Part A: No 

Reasoning A: The study involves the use of density functional theory (DFT) calculations to investigate 

the hydrogenation of CO2 on Pt- and Ni-doped graphene surfaces. This method falls under 

computational simulation, not wet lab experimental electrochemical synthesis (Section 2, 

"Computational details"). 

 

Part B: No 

Reasoning B: The paper focuses on the hydrogenation of CO2 into formic acid (HCOOH) over Pt- and 

Ni-doped graphene. This involves the transformation of CO2 (with C=O bonds) into formic acid. 

However, there is no specific mention of the transformation of C-H to C-OH or C=O, as required by the 

question's criteria (Sections 3.1, 3.4). 

 

Part C: No 

Reasoning C: The reactions discussed in the paper involve CO2 molecules and their conversion to formic 

acid on Pt- and Ni-doped graphene surfaces. The carbon in these reactions is not aliphatic but 

originates from CO2 molecules, which does not fulfill the criterion of reactions occurring on aliphatic 

carbon (Sections 3.1, 3.4). 
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Figure S17. An input prompt designed with vague and simplistic instructions for an ablation study, 
omitting crucial elements such as directives to adhere strictly to the provided text when answering 

and not including specific examples for the LLM. This lack of detail introduces greater uncertainty 
regarding the objectives, as the prompt does not provide sufficient guidance. This prompt was tested 

using the same task and model for semantic literature analysis to evaluate performance. 

  

 

User: Question: Does this paper report experimental findings related to the electrochemical synthesis  

conditions for aliphatic C-H oxidation reactions? 

 

Note that to answer "Yes" to this question, all three criteria must be met: (a) wet lab experimental 

electrochemical synthesis, (b) transformation from C-H to C-OH or C=O, and (c) the reaction occurs on 

aliphatic carbon. If any of these criteria are not mentioned, the overall answer should be "No." 

 

In your response, adhere strictly to the format below and address each part with specific references to 

the text: 

 

*** 

 

Overall Answer: {Yes/No} 

Part A: {Yes/ No} 

Reasoning A: {A brief justification} 

 

Part B: {Yes/ No} 

Reasoning B: {A brief justification} 

 

Part C: {Yes/ No} 

Reasoning C: {A brief justification} 

 

*** 

 

Manuscript: 

{full text} 
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S3.3. Evaluation Metrics and Results Analysis 

We first analyzed the processing time required for large language models to handle 140 manuscripts 

stored in a common folder. Each manuscript was converted to plain text format, and the text was 
combined with the pre-designed prompt described in the previous section. The conversion process 

was performed sequentially, resulting in 140 instances of interaction with the LLM via the API. 
The response time for the LLM was recorded for each manuscript, correlating with the length of  
tokens in both the input (manuscript reading) and output (LLM's response). As previously noted, 

the response for the LLM adheres to a specific template, ensuring the length of the output remains 
relatively constant. Therefore, the primary factor influencing the response time is the length of the 

input prompt, which is a combination of a fixed prompt and the manuscript's length. Consequently, 
longer manuscripts lead to extended response times. The figure below illustrates that the LLM's 
processing time ranges from 5 to 23 seconds, with an average of 14.59 seconds. It is important to 

highlight that the same fixed prompt was utilized for all interactions, and no human intervention 
was necessary during the LLM's processing of the manuscripts. 

 

Figure S18. The variation in processing times across the 140 manuscripts. 

 

Once the automated semantic literature analysis on 140 publications was completed, we aimed to 

evaluate the performance of large language models to determine their reliability in filtering less 
relevant literature and pinpointing those that chemists are interested in based on human natural 

language prompts. We also wanted to assess the extent to which LLMs can perform accurate 
classification and quantify this accuracy. An inadequately prompted model can produce erroneous 
outputs, known as hallucinations, where the model generates information that is not accurate, 

factual, or consistent with the input or real-world data. In our study, the primary objective is to 
assign a "Yes" or "No" label to each piece of literature to see if it fits the scope the human is looking 

for, making the model's precision and reliability crucial. This is especially true given the need for 
semantic analysis based on the content of the literature.  
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First of all, we separated the entire search into three criteria: (i) determine if this paper is a wet lab 
experiment paper, (ii) determine if this paper is for C-H oxidation reaction, and (iii) determine if 

this reaction is happening on the aliphatic carbon. An overall label is assigned as "Yes" only if all 
three sections have a “Yes” answer. For the selected 140 publications, we created the ground truth 

labels for each of them for both the overall answer and the three sections by having human 
volunteers review the papers and assign a "Yes" or "No" to each individual section for each paper. 
A paper with three “Yes” answers in the three sections is given a "Yes" for the overall answer, 

while the rest receive a "No" for the overall answer. The complete list  of ground truth labels 
associated with each publication can be found in Spreadsheet SF1. Literature Screening Dataset in 

the Supporting Information. Once the relevant papers were identified, we used their DOI, title, and 
abstract to query the Reaxys database (https://www.reaxys.com/) to retrieve the reaction and 
product SMILES. It is important to note that, in this study, we did not specifically ask large 

language models to extract reactions. Instead, we focused on filtering irrelevant papers and 
identifying the relevant papers based on their content and then used those papers to link to the 

reactions. Since the dataset was relatively small, the retrieved reactions and substrates could be 
conveniently verified by humans using an existing curated chemical database. However, it is worth 
noting that prior studies have shown that LLMs are capable of performing both identification and 

extraction tasks for chemical synthesis and organic reactions, yielding structured outputs related to 
the reactions discussed in the papers.10–12 

Additionally, we aimed to investigate the importance of well-designed prompts in guiding LLMs 
for semantic analysis. We sought to understand the impact of different levels of detail in prompts 
and demonstrate how applying specific prompt engineering strategies3,4 can enhance model 

performance. To this end, we designed two versions of prompts based on established principles for 
writing effective prompts: (a) detailed prompt: This version includes comprehensive instructions 

and examples to provide clear guidance to the LLM. (b) simple prompt: This version is shorter and 
less detailed, providing minimal guidance. By conducting an ablation study using these two 
versions of prompts, we aimed to evaluate the effectiveness of prompt engineering strategies. If 

these strategies enhance the model's understanding of the tasks, we should observe a difference in 
accuracy between the two versions. It is anticipated that the detailed instructions and appropriate 

use of examples in the detailed prompt will better align the LLM with human intentions and reduce 
uncertainty regarding the goals of semantic analysis. Overall, this evaluation not only assesses the 
performance of LLMs in classifying relevant literature but also explores how prompt design can 

influence the accuracy and reliability of semantic analysis. 

Next, to evaluate the LLMs' performance, we used the following metrics. Before explaining these 

metrics, it's important to define the terms True Positive (TP), False Positive (FP), True Negative 
(TN), and False Negative (FN): 

(1) True Positive (TP): This occurs when the LLM assigns a "Yes" overall answer to a paper, and 

the ground truth confirms that the paper fits all the criteria (it is a relevant paper that satisfies 
chemist’s criteria). 

(2) False Positive (FP): This happens when the LLM assigns a "Yes" overall answer to a paper, 
but the ground truth indicates that the paper does not fit all the criteria (it is not a relevant paper). 

(3) True Negative (TN): This occurs when the LLM assigns a "No" overall answer to a paper, and 

the ground truth confirms that the paper does not fit all the criteria (it is not a relevant paper).  
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(4) False Negative (FN): This happens when the LLM assigns a "No" overall answer to a paper, 
but the ground truth indicates that the paper does fit all the criteria (it is a relevant paper). 

Using these definitions, we can evaluate the LLM's performance with the following metrics: 
(1) Accuracy: Accuracy measures the overall correctness of the model's predictions. It is the ratio 

of correctly predicted instances (both true positives and true negatives) to the total number of 
instances. 

(2) Precision: Precision quantifies the accuracy of positive predictions, indicating the proportion 

of true positive results out of all positive results predicted by the model. 

(3) Recall: Recall evaluates the model's ability to identify all relevant instances, indicating the 

proportion of true positive results out of all actual positive instances. 

(4) F1 Score: The F1 score is the harmonic mean of Precision and Recall, providing a balance 
between the two metrics. It is useful when you need to account for both false positives and false 

negatives. 

 

 

 

Table S5. Equations used to calculate the performance metrics. 

 

Metric Equation 

  

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

  

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

  

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

  

F1 Score 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Table S6. Performance of LLM based on different prompts (Figure S14 and Figure S17) for the 

same list of literature. 

Prompt TP Count TN Count FP Count FN Count Total 

Detailed 21 114 3 2 140 

Simple 10 111 4 15 140 

 

 

 

 

Table S7. Overall evaluation metrics for two different prompts. The calculations are based on the 
values shown in Table S6 using the equations from Table S5. 

 

Prompt Accuracy Precision Recall F1 Score 

Detailed 96.43% 87.50% 91.30% 93.80% 

Simple 86.43% 71.43% 40% 54.69% 

 
 

 

 

 

Figure S19. Overall evaluation metrics for two different prompts. A significant loss in the recall 
performance resulted in a lower F1 score. 
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Table S8. The breakdown accuracy performance for each part. 

Prompt 
Part A 

Accuracy 

Part B 

Accuracy 

Part C 

Accuracy 

Detailed 97.14% 90% 95.71% 

Simple 80.71% 81.43% 77.14% 

 

 

 
 

 

 

Figure S20. Breakdown of accuracy performance for each part. Without proper prompt engineering 
strategies, the LLM can have a poorer understanding of human instructions, which can be 

ambiguous. 
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Section S4. Reactivity and Selectivity Prediction 

S4.1. Reactivity Model 

DFT calculations 

Density functional theory (DFT) quantum mechanical (QM) descriptors were calculated using a 
modified version of the automated workflow detailed in prior research.13,14 For each molecule 

examined in this study, we began by generating its 3D molecular conformers from input SMILES 
strings using the MMFF94s15 force field in RDKit16. We produced 20 conformers per molecule and 
selected the one with the lowest MMFF94s energy for further optimization at the GFN2-xTB17 

level of theory, followed by a frequency calculation at the same level to confirm the absence of 
imaginary frequencies. Subsequently, species that passed the frequency check were optimized 

again using the wB97XD18 functional and def2-svp basis set19 in Gaussian 1620. Due to potential 
DFT optimization failures, this procedure was repeated with different initial conformer sampling. 
Structural and vibrational frequency checks were conducted to ensure the final optimized 

geometries at the DFT level had converged. Natural bond orbitals and associated descriptors were 
then computed using NBO 7.0. The computed QM descriptors used in this study are listed in Table 

S9 below, and their values are provided in the attached file. In the end, 548 out of 575 (95.3%) 
species successfully generated the QM descriptors, while the remaining species failed due to DFT 
optimization issues. 

 

Table S9. List of Quantum Mechanical Descriptors used for Chemprop. 

Catagory Descriptors 

Atom NPA charge, shielding constant, 1s valence orbital occupancy,  
2s valence orbital occupancy, 2p valence orbital occupancy,  
3s valence orbital occupancy, 3p valence orbital occupancy,  
4s valence orbital occupancy, 4p valence orbital occupancy 

 
Bond Bond order, bond length, natural ionicity 

 
Molecule Dipole moment, traceless quadrupole moment,  

HOMO-3/LUMO, HOMO-3/LUMO+1, HOMO-3/LUMO+2, 
HOMO-3/LUMO+3, HOMO-2/LUMO, HOMO-2/LUMO+1, 
HOMO-2/LUMO+2, HOMO-2/LUMO+3, HOMO-1/LUMO, 

HOMO-1/LUMO+1, HOMO-1/LUMO+2, HOMO-1/LUMO+3, 
HOMO/LUMO, HOMO/LUMO+1, HOMO/LUMO+2, 

HOMO/LUMO+3 

 

 

Data processing and model training 

We employed a directed message-passing neural network (D-MPNN) using Chemprop 1.7.121 to 
train machine learning models for predicting oxidation reactivity. The D-MPNN architecture 
enables the extraction of molecular features by iteratively updating bond representations through 

message passing, effectively capturing the dependencies and interactions within the molecular 
graph. This learned representation is subsequently fed into a fully connected neural network, which 

refines the feature space to predict oxidation reactivity. As a baseline, we utilized a random forest 
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model with Morgan fingerprints of radius 2 and 2048 bits, providing a robust comparative 
benchmark to evaluate the performance of the D-MPNN model. 

All models were trained with default hyperparameters for 200 epochs across 5-fold cross-validation 
and 5 independent model ensembles. We employed different data-splitting strategies, including 

random splits and Bemis-Murcko scaffold splits, maintaining an 80:10:10 ratio for training, 
validation, and testing sets. This approach allowed us to assess the model's robustness and 
generalizability across diverse molecular scaffolds. 

To enhance the model's predictive power, we incorporated a set of QM descriptors as additional 
features.14 These descriptors provide detailed information about the electronic properties of 

molecules, enriching the feature space and potentially improving prediction accuracy. To leverage 
all the QM-calculated descriptors for every atom, all the hydrogen atoms in the molecular graph 
are considered. Due to computational limitations, we were able to use only 548 out of 575 data 

points to train the machine learning models, as some DFT calculations failed. Despite this, the 
dataset remained sufficiently comprehensive for model training and evaluation.  

The performance of D-MPNN models is illustrated in the table below, both with and without the 
inclusion of QM descriptors, alongside Random Forest models, across various data splits. The 
models exhibit high accuracy on the test sets for both random splits and scaffold splits, with most 

metrics exceeding 90%. Notably, incorporating QM descriptors into the D-MPNN model 
marginally enhances its performance, indicating that QM information can improve the model's 

generalizability beyond that of a conventional graph neural network. Overall, both D-MPNN and 
Random Forest models are highly effective in predicting reaction activity. 

Table S10. Overall evaluation metrics for reactivity models trained on different data splits. The 

error bars represent the standard deviation of the values across 5-fold. 
 

  Accuracy ROC-AUC Precision Recall F1 Score 

Random Forest  

Random 

0.92 +/- 0.01 0.97 +/- 0.02 0.88 +/- 0.04 0.97 +/- 0.02 0.92 +/- 0.02 

D-MPNN  0.94 +/- 0.02 0.98 +/- 0.01 0.90 +/- 0.02 0.96 +/- 0.03 0.93 +/- 0.02 

D-MPNN + QM  0.94 +/- 0.02 0.98 +/- 0.02 0.92 +/- 0.05 0.94 +/- 0.04 0.93 +/- 0.02 

Random Forest  

Scaffold 

0.93 +/- 0.02 0.97 +/- 0.02 0.86 +/- 0.04 0.99 +/- 0.02 0.92 +/- 0.02 

D-MPNN  0.91 +/- 0.01 0.96 +/- 0.02 0.87 +/- 0.03 0.94 +/- 0.04 0.90 +/- 0.01 

D-MPNN + QM  0.93 +/- 0.04 0.96 +/- 0.03 0.87 +/- 0.05 0.98 +/- 0.02 0.92 +/- 0.04 

 

Interpretability method 

The interpretability method22 implemented in Chemprop identifies substructures, known as 

rationales, that significantly contribute to specific properties within molecules using Monte Carlo 
Tree Search (MCTS). A rationale is a key substructure that drives the desired properties in target 

molecules. The process begins with a positive molecule that satisfies the property constraint. The 
molecule is then iteratively pruned by removing peripheral bonds or rings, creating a search tree 
where each state represents a subgraph. 
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S4.2. Selectivity Model 

For site-selectivity prediction, we employed a bond-property prediction model implemented in 

Chemprop. Unlike molecular property prediction, where the entire molecular representation is 
considered, this approach focuses on each bond within the molecule. After message passing, each 

bond embedding is processed through a fully connected neural network to predict the reactivity at 
each site. The models were trained using the same data splits and hyperparameters as the reactivity 
prediction models. However, a key difference for site-selectivity prediction is that hydrogen atoms 

were excluded from the molecular featurization process, as reaction sites are not located on 
hydrogen atoms. This refinement ensures that the model accurately targets the relevant reactive 

sites, enhancing its predictive accuracy. Since only the bond embedding is used as input to the fully 
connected neural network, the molecule-level QM descriptors cannot be used in this model; only 
atom and bond descriptors are utilized. All training splits and scripts used in this study are provided 

in the Supporting Information. 
As shown in table below, models trained on different splits demonstrate reasonable accuracy. Given 

that the number of oxidizable sites is significantly lower than the number of non-oxidizable sites, 
the model achieves high accuracy. However, this is accompanied by low precision, recall, and F1 
scores. In contrast, the ROC-AUC serves as a robust metric for evaluating model performance in 

highly imbalanced datasets. Our model achieves a commendable ROC-AUC value exceeding 90%, 
indicating strong discriminative capability. 

 
Table S11. Overall evaluation metrics for reactivity models trained on different data splits. The 
error bars represent the standard deviation of the values across 5-fold. 

 
  Accuracy ROC-AUC Precision Recall F1 Score 

D-MPNN  
Random 

0.98 +/- 0.01 0.98 +/- 0.01 0.70 +/- 0.09 0.72 +/- 0.09 0.70 +/- 0.08 

D-MPNN + QM  0.98 +/- 0.01 0.98 +/- 0.01 0.71 +/- 0.11 0.72 +/- 0.07 0.71 +/- 0.07 

D-MPNN  
Scaffold 

0.98 +/- 0.01 0.98 +/- 0.01 0.73 +/- 0.15 0.61 +/- 0.24 0.63 +/- 0.17 

D-MPNN + QM  0.98 +/- 0.01 0.98 +/- 0.01 0.69 +/- 0.13 0.65 +/- 0.18 0.66 +/- 0.14 
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S4.3. Virtual Screening 

 

 
 
Figure S21. Visualization of the chemical space between the training dataset (red and blue) and 
the 500,000 commercially available compound dataset (grey) provided courtesy of chemical 

suppliers (i) Ambeed, (ii) ChemScene, and (iii) Arctom_Scientific, using Morgan fingerprints and 
t-SNE.  
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Section S5. LLM-Assisted Code Generation 

 
 

 

 
 

Figure S22. An overview of 4 tasks examined in this study and examples of code generated by 
the LLM for Tasks 1 to 4. 
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Table S12. Summary of performance of different base models on Task 1.   
 

Model Name Avg Time 

(sec) 

Code 

Length 

Code 

Correctness 

Code Correctness 

(with reflection) 

Code 

Accuracy 

ML Model 

Performance 

llama-3 24 218 54% 76% 72% 96% 

llama-3.1 25 224 52% 89% 80% 92% 

claude-3-sonnet 16 165 75% 91% 89% 95% 

claude-3-opus 37 188 84% 100% 99% 96% 

claude-3.5-sonnet 14 216 100% 100% 99% 96% 

gpt-3.5-turbo 7 189 75% 90% 88% 95% 

gpt-4o-mini 9 243 60% 91% 90% 96% 

gpt-4-0613 29 180 70% 98% 92% 95% 

gpt-4-turbo 19 209 86% 99% 99% 96% 

gpt-4o 11 218 92% 100% 99% 96% 

o1-mini 25 249 94% 100% 100% 96% 

o1-preview 37 244 91% 100% 100% 96% 

 

Note: Code correctness is defined as the percentage of code that can be executed without any error 
messages when repeating the same task 100 times. Code accuracy is defined as the code being both 
executable and achieving the expected outcome, specifically resulting in a machine learning model 

with more than 85% accuracy on the test dataset. A higher rate of code correctness and accuracy 
generally indicates fewer hallucinations, as models prone to hallucination often generate code that 

either fails to execute or produces incorrect results. The number of times of reflection is set to two, 
which means there are three attempts in total when self-reflection mode turns on. The average time 
is measured by counting the response time for the model to generate the entire code, and the code 

length includes comments. 
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Table S13. Summary of performance of different base models on Task 2.   
 

Model Name Avg Time 

(sec) 

Code 

Length 

Code 

Correctness 

Code Correctness 

(with reflection) 

Code 

Accuracy 

llama-3 28 476 1% 9% 8% 

llama-3.1 22 471 6% 16% 15% 

claude-3-sonnet 22 514 0% 18% 14% 

claude-3-opus 39 424 18% 60% 56% 

claude-3.5-sonnet 15 450 5% 48% 41% 

gpt-3.5-turbo 8 322 20% 52% 34% 

gpt-4o-mini 12 560 5% 27% 27% 

gpt-4-0613 33 419 18% 42% 30% 

gpt-4-turbo 30 468 26% 66% 64% 
gpt-4o 16 548 43% 79% 75% 
o1-mini 23 764 35% 75% 74% 
o1-preview 66 661 50% 90% 85% 

 

Note: Code correctness is defined as the percentage of code that can be executed without any error 
messages when repeating the same task 100 times. Code accuracy is defined as the code being both 
executable and achieving the expected outcome, specifically resulting in qualified csv file with 

correct format and contents. A higher rate of code correctness and accuracy generally indicates 
fewer hallucinations, as models prone to hallucination often generate code that either fails to 

execute or produces incorrect results. The average time is measured by counting the response time 
for the model to generate the entire code, and the code length includes comments. 
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Table S14. Summary of performance of different base models on Task 3.   
 

Model Name Avg Time 

(sec) 

Code 

Length 

Code 

Correctness 

Code Correctness 

(with reflection) 

Code 

Accuracy 

llama-3 10 121 90% 90% 76% 

llama-3.1 9 105 98% 98% 98% 

claude-3-sonnet 12 176 95% 95% 94% 

claude-3-opus 26 219 90% 98% 94% 

claude-3.5-sonnet 11 336 98% 99% 99% 

gpt-3.5-turbo 6 205 28% 54% 52% 

gpt-4o-mini 6 271 80% 81% 81% 

gpt-4-0613 25 249 80% 94% 92% 

gpt-4-turbo 30 374 76% 96% 94% 

gpt-4o 11 368 92% 98% 94% 

o1-mini 25 358 79% 98% 98% 

o1-preview 36 285 91% 100% 99% 

 
Note: Code correctness is defined as the percentage of code that can be executed without any error 
messages when repeating the same task 100 times. Code accuracy is defined as the code being both 

executable and achieving the expected outcome, specifically resulting in qualified csv file with 
correct format and contents. A higher rate of code correctness and accuracy generally indicates 

fewer hallucinations, as models prone to hallucination often generate code that either fails to 
execute or produces incorrect results. The average time is measured by counting the response time 
for the model to generate the entire code, and the code length includes comments. 
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Figure S23. A representative user prompt used for tasking the LLM for Task 1. The prompt was 
crafted by a human using previously described prompt engineering strartegies.3,23 The LLM is 

tasked with processing a given Excel spreadsheet, making decisions on the machine learning model 
to choose, performing cross-validation, evaluating the model on a separate test set, and finally 
reporting the model’s performance. 

  

User:  

You are an expert in coding, and you always write code in a single, whole Python code block so that your code can be copied 

and pasted directly into a Jupyter Notebook for execution. Your task is to help a chemist write an ML program to train several 

models for reactivity prediction. The chemist has a list of compounds in "echem_train.xlsx" in the same folder, and the first 10 

rows look like this:  

‘’’ 

CAS              Canonical SMILES                       Reactivity  Oxidation Site 

2049-96-9        CCCCCOC(=O)c1ccccc1                    1           2,3 

98-51-1          Cc1ccc(C(C)(C)C)cc1                    1           1 

870259-02-2      C#Cc1cc(C#C)c2ccc3c(C#C)cc(C#C)c4ccc1c2c43 0       -1 

121-69-7         CN(C)c1ccccc1                          0           -1 

82-38-2          CNc1cccc2c1C(=O)c1ccccc1C2=O           0           -1 

1209228-43-2     CCCCOc1ccc(CC)cc1                      1           10 

2459764-19-1     CCc1ccc(CCNC(=O)C2CC(F)(F)C2)cc1       1           2,7 

853-23-6         CC(=O)OC1CCC2(C)C(=CCC3C4CCC(=O)C4(C)CCC32)C1 1    12 

91-17-8          C1CCC2CCCCC2C1                         1           4,9 

6553-83-9        CCCCCOC(=O)C1CCCCC1                    1           11,12,13 

‘’’ 

The reactivity can be 1 or 0. 

 

The goal of the ML model is to predict, based on a given SMILES string of a chemical, using its fingerprint, whether this compound 

will react (1) or will not react (0). 

 

Please propose five ML models suitable for this case, and perform 5-fold cross-validation for each model. 

 

For the trained models, there is a file called "echem_test.xlsx" with the same layout as the train file, which you can use to  evaluate 

your model performance. 

 

At the end, print out the accuracy performance of each model under cross-validation and on the test set. For example: 

‘’’ 

RandomForestClassifier: Cross-validation accuracy: 0.924  

RandomForestClassifier: Test set accuracy: 0.930 

 

SVC: Cross-validation accuracy: 0.915 

SVC: Test set accuracy: 0.957 

‘’’ 
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import pandas as pd 

from rdkit import Chem 

from rdkit.Chem import AllChem 

from sklearn.model_selection import train_test_split, cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score 

 

# Load training data 

train_data = pd.read_excel("echem_train.xlsx") 

 

# Load test data 

test_data = pd.read_excel("echem_test.xlsx") 

 

# Function to convert SMILES string to Morgan fingerprint 

def smiles_to_fingerprint(smiles): 

    mol = Chem.MolFromSmiles(smiles) 

    if mol is not None: 

        # Calculate fingerprint 

        fingerprint = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048) 

        return list(fingerprint) 

    else: 

        return None 

 

# Prepare training data 

X_train = train_data['Canonical SMILES'].apply(smiles_to_fingerprint) 

y_train = train_data['Reactivity'] 

 

# Prepare test data 

X_test = test_data['Canonical SMILES'].apply(smiles_to_fingerprint) 

y_test = test_data['Reactivity'] 

 

# Remove rows with None fingerprints (invalid SMILES parsing) 

X_train = X_train.dropna() 

y_train = y_train[X_train.index] 

 

X_test = X_test.dropna() 

y_test = y_test[X_test.index] 

 

# Convert the DataFrames to lists 

X_train = list(X_train) 

X_test = list(X_test) 

 

# List of models to train and evaluate 

models = [ 

    ("RandomForestClassifier", RandomForestClassifier()), 

    ("SVC", SVC()), 

    ("KNeighborsClassifier", KNeighborsClassifier()), 

    ("DecisionTreeClassifier", DecisionTreeClassifier()), 

    ("LogisticRegression", LogisticRegression(max_iter=1000)) 

] 

 

# Evaluate each model using 5-fold cross-validation 

results = [] 

for name, model in models: 

    print(f"Training {name}") 

    cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy') 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

    test_accuracy = accuracy_score(y_test, y_pred) 
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Figure S24. A representative example of the output generated by the LLM gpt-4o based on the 
user's prompt for Task 1. In this example, we assume the user can have any level of background 

knowledge in machine learning and may not be familiar with all the functions. Therefore, we 
intentionally exclude detailed information about the machine learning models and relevant  

parameters, allowing the LLM to make decisions independently. This approach results in variability 
in the choice of models, parameters, and training methods, as the LLM may produce slightly 
different answers each time. It is important to repeat the same task multiple times to assess the 

robustness and reliability of the answers, rather than judging based on a single performance. The 
task is repeated for all different base models 100 times, and the full conversation, along with all 

generated code is provided in Spreadsheet SF3. Auto Coding Dataset in the Supporting 
Information. 

# Evaluate each model using 5-fold cross-validation 

results = [] 

for name, model in models: 

    print(f"Training {name}") 

    cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy') 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

    test_accuracy = accuracy_score(y_test, y_pred) 

    results.append((name, cv_scores.mean(), test_accuracy)) 

 

# Print out the results 

for name, cv_accuracy, test_accuracy in results: 

    print(f"{name}: Cross-validation accuracy: {cv_accuracy:.3f}") 

    print(f"{name}: Test set accuracy: {test_accuracy:.3f}") 
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Figure S25. Another example of the output generated by the LLM llama-3.1 based on the user's 
prompt for Task 1, showcasing a different choice of model and code.  

import numpy as np 

import pandas as pd 

from rdkit import Chem, DataStructs 

from rdkit.Chem import AllChem 

from sklearn.model_selection import cross_val_score, train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn import svm 

from sklearn.neural_network import MLPClassifier 

 

# Load train and test data 

train = pd.read_excel('echem_train.xlsx') 

test = pd.read_excel('echem_test.xlsx') 

 

# function to convert canonical SMILES strings into ECFP6 fingerprints 

def smiles_to_ecfp6_array(smiles_str): 

    mol = Chem.MolFromSmiles(smiles_str) 

    arr = np.zeros((1,), dtype=bool) 

    fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, useFeatures=True) 

    DataStructs.ConvertToNumpyArray(fp, arr) 

    return arr 

 

# Apply the conversion function to convert canonical SMILES strings into ECFP6 fingerprints 

X_train = np.array([smiles_to_ecfp6_array(s) for s in train['Canonical SMILES']]) 

y_train = train['Reactivity'].values 

 

X_test = np.array([smiles_to_ecfp6_array(s) for s in test['Canonical SMILES']]) 

y_test = test['Reactivity'].values 

 

# Define models 

models = [(LogisticRegression(), 'Logistic Regression'), 

          (RandomForestClassifier(), 'Random Forest Classifier'), 

          (GradientBoostingClassifier(), 'Gradient Boosting Classifier'), 

          (svm.SVC(), 'SVC'), 

          (MLPClassifier(), 'MLP Classifier')] 

 

for model, name in models: 

    # Do 5-fold cross-validation 

    scores = cross_val_score(model, X_train, y_train, cv=5) 

 

    # Fit and predict 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

 

    # Calculate accuracy of the model 

    accuracy_cv = scores.mean() 

    accuracy_test = accuracy_score(y_test, y_pred) 

 

    # Print the accuracy performance 

    print(f'{name}: Cross-validation accuracy: {accuracy_cv:.3f}\n{name}: Test set accuracy: 

{accuracy_test:.3f}\n') 
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Figure S26. An example of incorrect code output generated by the LLM gpt-3.5-turbo based on 
the user's prompt for Task 1. Although the code appears correct and executable, the resulting 

training yields low accuracy performance. 
  

import pandas as pd 

from sklearn.model_selection import train_test_split, cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import SVC 

from sklearn.naive_bayes import GaussianNB 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

 

# Load the training dataset 

train_data = pd.read_excel("echem_train.xlsx") 

 

# Load the test dataset 

test_data = pd.read_excel("echem_test.xlsx") 

 

X_train = train_data['Canonical SMILES'] 

y_train = train_data['Reactivity'] 

 

X_test = test_data['Canonical SMILES'] 

y_test = test_data['Reactivity'] 

 

# Feature extraction for SMILES strings can be done using libraries like RDKit 

# Here, we will simulate by using the length of SMILES string as a feature 

X_train_simulated = X_train.apply(len).values.reshape(-1, 1) 

X_test_simulated = X_test.apply(len).values.reshape(-1, 1) 

 

models = { 

    'RandomForestClassifier': RandomForestClassifier(), 

    'SVC': SVC(), 

    'GaussianNB': GaussianNB(), 

    'LogisticRegression': LogisticRegression(), 

    'KNeighborsClassifier': KNeighborsClassifier() 

} 

 

# For each model, perform 5-fold cross-validation and print the accuracy 

for name, model in models.items(): 

    cv_scores = cross_val_score(model, X_train_simulated, y_train, cv=5) 

    test_scores = model.fit(X_train_simulated, y_train).score(X_test_simulated, y_test) 

     

    print(f"{name}: Cross-validation accuracy: {cv_scores.mean():.3f}") 

    print(f"{name}: Test set accuracy: {test_scores:.3f}") 

 



 S48 

 

Gathering data I’m pulling together the training data from 'echem_train.xlsx', focusing on 

compounds and their SMILES strings to estimate 'Reactivity'. This step forms the basis for 

subsequent model training. 

 

Weighing model options Considering five ML models: Logistic Regression, Random Forest, SVM, 

KNN, and Gradient Boosting. Also looking at alternatives like Naive Bayes and Neural 

Networks. Planning to use 5-fold cross-validation for training and evaluating model 

performance. 

 

Preparing the tools I’m thinking through the essentials: importing RDKit, pandas, numpy, and 

scikit-learn to compute fingerprints from SMILES strings. 

 

Mapping the code I’m outlining the plan to import libraries, read data, compute fingerprints, 

convert them to numpy arrays, and define models for cross-validation, training, and testing 

with print statements for accuracies. 

 

Converting data I’m translating SMILES strings into fingerprints, filtering out invalid ones, 

and isolating the features and labels for both training and test datasets. It's interesting 

to see the data transformation unfold. 

 

Preparing for scaling I’m setting up the StandardScaler from sklearn to preprocess the data. 

Models like LogisticRegression, SVC, and KNeighborsClassifier benefit from this. Scaling is 

separately defined for LogisticRegression, SVC, and KNeighborsClassifier. 

 

Assessing model performance I’m evaluating models with and without scaling. Using cross-

validation scores and test set accuracy, I aim to pinpoint which approach yields the best 

results. 

 

Handling data I’m pulling data from Excel files, converting SMILES to fingerprints, 

standardizing features, and setting up models for cross-validation. Observing patterns 

improves model performance. 

 

import pandas as pd 

import numpy as np 

from rdkit import Chem 

from rdkit.Chem import AllChem, DataStructs 

from sklearn.model_selection import cross_val_score, StratifiedKFold 

from sklearn.metrics import accuracy_score 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import StandardScaler 

 

# Read the training and test data 

train_df = pd.read_excel('echem_train.xlsx') 

test_df = pd.read_excel('echem_test.xlsx') 

 

# Function to compute fingerprints from SMILES 

def smiles_to_fp(smiles): 

    mol = Chem.MolFromSmiles(smiles) 

    if mol is not None: 

        fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048) 

        arr = np.zeros((1,)) 

        DataStructs.ConvertToNumpyArray(fp, arr) 

        return arr 

    else: 

        return None  # Handle invalid SMILES 

 

# Compute fingerprints for training data 

train_df['Fingerprint'] = train_df['Canonical SMILES'].apply(smiles_to_fp) 
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Figure S27. An example of the reasoning and the output code generated by the LLM OpenAI o1-
preview based on the user's prompt for Task 1, showcasing the enhanced reasoning ability.  

        return arr 

    else: 

        return None  # Handle invalid SMILES 

# Compute fingerprints for training data 

train_df['Fingerprint'] = train_df['Canonical SMILES'].apply(smiles_to_fp) 

train_df = train_df.dropna(subset=['Fingerprint']) 

# Extract features and labels 

X_train = np.array(list(train_df['Fingerprint'])) 

y_train = train_df['Reactivity'].values 

# Compute fingerprints for test data 

test_df['Fingerprint'] = test_df['Canonical SMILES'].apply(smiles_to_fp) 

test_df = test_df.dropna(subset=['Fingerprint']) 

X_test = np.array(list(test_df['Fingerprint'])) 

y_test = test_df['Reactivity'].values 

# Initialize scaler 

scaler = StandardScaler() 

# Scale features 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# Define models 

models_with_scaling = { 

    'LogisticRegression': LogisticRegression(max_iter=1000), 

    'SVC': SVC(), 

    'KNeighborsClassifier': KNeighborsClassifier() 

} 

models_without_scaling = { 

    'RandomForestClassifier': RandomForestClassifier(), 

    'GradientBoostingClassifier': GradientBoostingClassifier() 

} 

# Cross-validation setup 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

# Evaluate models with scaling 

for name, model in models_with_scaling.items(): 

    cv_scores = cross_val_score(model, X_train_scaled, y_train, cv=skf, scoring='accuracy') 

    cv_accuracy = np.mean(cv_scores) 

    model.fit(X_train_scaled, y_train) 

    y_pred = model.predict(X_test_scaled) 

    test_accuracy = accuracy_score(y_test, y_pred) 

    print(f"{name}: Cross-validation accuracy: {cv_accuracy:.3f}") 

    print(f"{name}: Test set accuracy: {test_accuracy:.3f}\n") 

# Evaluate models without scaling 

for name, model in models_without_scaling.items(): 

    cv_scores = cross_val_score(model, X_train, y_train, cv=skf, scoring='accuracy') 

    cv_accuracy = np.mean(cv_scores) 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

    test_accuracy = accuracy_score(y_test, y_pred) 

    print(f"{name}: Cross-validation accuracy: {cv_accuracy:.3f}") 

    print(f"{name}: Test set accuracy: {test_accuracy:.3f}\n") 
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import re 

import tempfile 

import os 

import shutil 

import anthropic 

import openai 

import pandas as pd 

import time 

import traceback 

import glob 

import numpy as np 

from IPython.utils.io import capture_output 

import subprocess 

from skopt import Optimizer 

from skopt.space import Real, Categorical, Integer 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.model_selection import KFold, cross_val_score 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn.svm import SVC 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import accuracy_score 

from rdkit import Chem 

from rdkit.Chem import Descriptors 

 

def generate_and_execute_code(user_prompts, model='gpt-3.5-turbo', num_calls=100, 

max_reflection=3): 

    results = [] 

    for _ in range(num_calls):         

        conversation_history = [] 

        row_data = {'Model': model} 

        execution_result, num_reflections = 0, 0 

        for i in range(len(user_prompts)): 

            if i > 0 and execution_result != 1: 

                row_data[f'Generated Code {i+1}'] = 'N/A' 

                row_data[f'Execution Result {i+1}'] = 'N/A' 

                row_data[f'Response Time {i+1} (s)'] = 'N/A' 

                row_data[f'Number of Reflections {i+1}'] = 'N/A' 

                continue 

             

            prompt_conversation_history = conversation_history.copy() 

            response_content, response_time = chat(model, user_prompts[i], 

prompt_conversation_history) 

            prompt_conversation_history.append({"role": "user", "content": user_prompts[i]}) 

            prompt_conversation_history.append({"role": "assistant", "content": 

response_content}) 

 

            code_block = re.search(r'```python\n(.*?)\n```', response_content, re.DOTALL) 

 

            if code_block: 

                code = code_block.group(1) 

            else: 

                code = response_content 

                print(f"Warning: No code block found in the response for prompt {i+1}. 

Attempting to execute the entire response.") 

 

            for j in range(max_reflection + 1): 

                execution_result, error_message = run_code(code) 

                if execution_result == 1: 

                    break 

                if j < max_reflection: 

                    reflection_prompt = f"Please reflect on the code you previously wrote. 

There is an error and I cannot run it on my Jupyter Notebook. The error message 
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            for j in range(max_reflection + 1): 

                execution_result, error_message = run_code(code) 

                if execution_result == 1: 

                    break 

                if j < max_reflection: 

                    reflection_prompt = f"Please reflect on the code you previously wrote. 

There is an error and I cannot run it on my Jupyter Notebook. The error message 

is:\n{error_message}\nPlease try to catch any bugs or failures to follow the user 

instruction. In your answer, give me the full revised code. Do not just give the revised 

part, but the whole code that can be directly copy and paste to run. Make sure you give full 

code in the python code block, do not miss, comment or abbreviation anything." 

                    print(reflection_prompt) 

                    prompt_conversation_history.append({"role": "user", "content": 

reflection_prompt}) 

                    revised_response_content, revised_response_time = chat(model, 

reflection_prompt, prompt_conversation_history) 

                    prompt_conversation_history.append({"role": "assistant", "content": 

revised_response_content}) 

 

                    revised_code_block = re.search(r'```python\n(.*?)\n```', 

revised_response_content, re.DOTALL) 

 

                    if revised_code_block: 

                        code = revised_code_block.group(1) 

 

                    response_time += revised_response_time 

                    num_reflections += 1 

 

            row_data[f'Generated Code {i+1}'] = code 

            row_data[f'Execution Result {i+1}'] = execution_result 

            row_data[f'Response Time {i+1} (s)'] = response_time 

            row_data[f'Number of Reflections {i+1}'] = num_reflections 

            conversation_history = prompt_conversation_history.copy() 

 

        row_data['Conversation History'] = str(conversation_history) 

        results.append(row_data) 

 

    df = pd.DataFrame(results) 

    df.to_excel('Results_'+model+'.xlsx', index=False) 

 

    return df 

 

def run_code(code): 

 

    with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.py') as temp_file: 

        temp_file.write(code) 

        temp_file_path = temp_file.name 

 

    try: 

        result = subprocess.run(['python', temp_file_path], capture_output=True, text=True) 

        os.unlink(temp_file_path) 

 

        if result.returncode == 0: 

            return 1, None 

        else: 

            return 0, result.stderr 

    except Exception as e: 

        error_message = traceback.format_exc() 

        os.unlink(temp_file_path) 

        return 0, error_message 
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        error_message = traceback.format_exc() 

        os.unlink(temp_file_path) 

        return 0, error_message 

     

def chat(model, user_prompt, conversation_history, max_retries=3):     

    retry_count = 0 

    pre_prompt = "You are a helpful coding assistant who always writes detailed and 

executable code without human implementation. Please ensure that you write the complete code 

so I can copy and paste it directly into a Jupyter notebook to run. Please write all codes in 

one code block; do not separate them by text explanations. When explanations are necessary, 

include them as comments in the code. Make sure you use ```python to mark the start of the 

python code." 

     

    while retry_count < max_retries: 

        try: 

            start_time = time.time() 

            if model.startswith('claude'): 

                client = anthropic.Anthropic(api_key=anthropic_key) 

                response = client.messages.create( 

                    model=model, 

                    max_tokens=4096, 

                    messages=[ 

                        *conversation_history, 

                        {"role": "user", "content": user_prompt} 

                    ] 

                ) 

                response_content = response.content[0].text 

            elif model.startswith('gpt'): 

                response = openai.ChatCompletion.create( 

                    model=model, 

                    messages=[ 

                        {"role": "system", "content": pre_prompt}, 

                        *conversation_history, 

                        {"role": "user", "content": user_prompt} 

                    ] 

                ) 

                response_content = response.choices[0].message.content 

            elif model.startswith('llama'):  

                formatted_history = "" 

                for message in conversation_history: 

                    role = message["role"] 

                    if role == "user": 

                        formatted_history += f"User: {message['content']}\n" 

                    elif role == "assistant": 

                        formatted_history += f"Assistant: {message['content']}\n" 

                formatted_prompt = f"{formatted_history}User: {user_prompt}\nAssistant:" 

                if model == "llama-3": 

                    model_name = "meta/meta-llama-3-70b-instruct" 

                response = replicate.run( 

                    model_name, 

                    input={ 

                        "system_prompt":  pre_prompt, 

                        "max_tokens": 4096, 

                        "prompt": formatted_prompt 

                    } 

                ) 

                response_content = ''.join(response) 

                print(response_content) 

                 

                 

                 

            else: 

                raise ValueError(f"Unknown model: {model}") 
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Figure S28. An example of Python code used to automate the repetitive task of prompting an LLM 
100 times and saving the output code. If the generated code is not executable, the error message is 

sent back to the LLM for correction. This logic is applied to all tasks in this study by simply 
changing the model choice and the user prompt. The complete history of all generated code can be 

found in Spreadsheet SF3. Auto Coding Dataset of the Supporting Information.   

                response_content = ''.join(response) 

                print(response_content) 

                 

                 

                 

            else: 

                raise ValueError(f"Unknown model: {model}") 

             

            end_time = time.time() 

            response_time = end_time - start_time 

            return response_content, response_time 

        except Exception as e: 

            retry_count += 1 

             

            if retry_count == max_retries: 

                error_message = f"Error occurred during code generation: {str(e)}" 

                print(error_message) 

                return error_message, 0 

 

 

user_prompts = ["""You are an expert in coding and you always write code…… 

…… 

""" 

] 
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import pandas as pd 

import re 

import tempfile 

import subprocess 

import os 

import traceback 

import time 

 

def process_excel_files(file_names): 

    summary_data = [] 

     

    for file_name in file_names: 

        # Check if the "acc_" file already exists 

        output_file_name = "acc_" + file_name 

        if os.path.isfile(output_file_name): 

            # If the file exists, read it instead of the original file 

            df = pd.read_excel(output_file_name) 

        else: 

            # If the file doesn't exist, read the original file 

            df = pd.read_excel(file_name) 

             

            # Create a new column "Performance" and initialize it with an empty string 

            df["Performance"] = "" 

             

            # Filter rows where "Execution Result 1" is 1 

            filtered_df = df[df["Execution Result 1"] == 1] 

             

            total_rows = len(df) 

            print(f"Processing {file_name} with {total_rows} rows") 

             

            # Iterate over the filtered rows 

            for index, row in filtered_df.iterrows(): 

                print(f"Processing row {index + 1}/{total_rows}") 

                code = row["Generated Code 1"] 

                 

                # Create a temporary file to write the code 

                with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.py') as 

temp_file: 

                    temp_file.write(code) 

                    temp_file_path = temp_file.name 

                 

                try: 

                    # Execute the code using subprocess 

                    result = subprocess.run(['python', temp_file_path], capture_output=True, 

text=True, timeout=100) 

                    os.unlink(temp_file_path) 

                     

                    if result.returncode == 0: 

                        # Code executed successfully 

                        output = result.stdout.split('\n') 

                         

                        # Find the accuracy value from the captured output 

                        accuracy_values = [] 

                        for line in output: 

                            match = re.search(r"accuracy:\s*(\d+(\.\d+)?)", line, 

re.IGNORECASE) 

                            if match: 

                                accuracy_values.append(float(match.group(1))) 

                         

                        # Update the "Performance" column with the highest accuracy value 

                        if accuracy_values: 

                            df.at[index, "Performance"] = max(accuracy_values) 
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                            match = re.search(r"accuracy:\s*(\d+(\.\d+)?)", line, 

re.IGNORECASE) 

                            if match: 

                                accuracy_values.append(float(match.group(1))) 

                         

                        # Update the "Performance" column with the highest accuracy value 

                        if accuracy_values: 

                            df.at[index, "Performance"] = max(accuracy_values) 

                    else: 

                        # Code execution encountered an error 

                        print(f"Error executing code at index {index} in file {file_name}: 

{result.stderr}") 

                except subprocess.TimeoutExpired: 

                    print(f"Error: Code execution at index {index} in file {file_name} 

exceeded time limit and was terminated.") 

                    os.unlink(temp_file_path) 

 

     

                except Exception as e: 

                    # Error occurred while executing the code 

                    error_message = traceback.format_exc() 

                    os.unlink(temp_file_path) 

                    print(f"Error executing code at index {index} in file {file_name}: 

{error_message}") 

                     

             

            # Save the updated DataFrame back to the Excel file 

            df.to_excel(output_file_name, index=False) 

         

        # Generate summary data for the current file 

        model_name = file_name.split("_")[1] 

        total_rows = len(df) 

        executed_rows = len(df[df["Execution Result 1"] == 1]) 

         

        # Count rows where "Number of Reflections 1" is 0 within the filtered DataFrame 

        one_conversation_rows = len(df[(df["Execution Result 1"] == 1) & (df["Number of 

Reflections 1"] == 0)]) 

         

        # Handle empty or non-numeric values in the "Performance" column 

        avg_accuracy = pd.to_numeric(df["Performance"], errors='coerce').mean() 

         

        # Calculate the average time considering the "Number of Reflections 1" 

        df["Adjusted Time"] = df["Response Time 1 (s)"] / (df["Number of Reflections 1"] + 1) 

        avg_time = df["Adjusted Time"].mean() 

         

        correctness = len(df[pd.to_numeric(df["Performance"], errors='coerce') > 0.85]) /  

total_rows #executed_rows 

         

        # Calculate the average code length 

        code_length = df["Generated Code 1"].apply(lambda x: len(str(x).split())).mean() 

         

        summary_row = { 

            "Model Name": model_name, 

            "Avg Time": avg_time, 

            "Code Length": code_length, 

            "Code Executability (one conversation)": one_conversation_rows / total_rows, 

            "Code Executability (with reflection)": executed_rows / total_rows, 

            "Correctness": correctness, 

            "Avg Accuracy of ML Models": avg_accuracy 

        } 

         

        summary_data.append(summary_row) 
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Figure S29. An example of Python code used to automate the evaluation of code generated by 
repeatedly prompting an LLM 100 times for Task 1. The generated code is analyzed and graded 

based on the performance of the trained machine learning models. The evaluation outcomes are 
merged and provided in Spreadsheet SF3 of the Supporting Information. 

 
 
  

            "Code Executability (one conversation)": one_conversation_rows / total_rows, 

            "Code Executability (with reflection)": executed_rows / total_rows, 

            "Correctness": correctness, 

            "Avg Accuracy of ML Models": avg_accuracy 

        } 

         

        summary_data.append(summary_row) 

     

    # Create a summary DataFrame from the summary data 

    summary_df = pd.DataFrame(summary_data) 

     

    # Reorder the columns 

    column_order = ["Model Name", "Avg Time", "Code Length", "Code Executability (one 

conversation)", 

                    "Code Executability (with reflection)", "Correctness", "Avg Accuracy of 

ML Models"] 

    summary_df = summary_df[column_order] 

         

    return summary_df 
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Figure S30. A representative user prompt used for tasking the LLM for the first part of Task 2. The 
prompt was crafted by a human using previously described prompt engineering strartegies.3,23 In 

this case, the LLM is tasked with generating an initial search space. 
 

 

 

Figure S31. A representative user prompt used for tasking the LLM for the second part of Task 2. 
Once the LLM-generated code for the first part is executable, this prompt is sent to the LLM as a 

follow-up request, tasking the LLM with starting from the previously written code and files and 
making suggestions on the synthesis conditions. 

 

User:  

You are an expert in coding and chemistry, and you are designing an experiment with a synthetic chemist to write an active 

machine learning program in Python to improve the yield of an electrochemical C-H bond oxidation. The same substrate 

compound will be subjected to different concentrations, mediator types and equivalents, and different electrolytes at 1 eq, w ith 

the option of adding a co-solvent. The product will be analyzed to determine if the specific C-H bond is oxidized to C-OH or 

C=O. 

 

The search space for this optimization has been previously determined and is as follows: 

‘’’ 

Substrate Concentration: 0.025 M, 0.05 M, 0.075 M, 0.1 M, 0.125 M 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

Electrolyte type: LiClO4, LiOTf, Bu4NClO4, Et4NBF4, Bu4NPF6 

Co-solvent HFIP: 0, 1  

‘’’ 

Please write code to generate a CSV with the entire search space, where each row is a unique combination of synthesis 

parameters. The first 5 columns will be these parameters. 

 

Once you generate the reaction scope, move to the next step: initialization. This step provides the chemist with 5 conditions  to 

start with by randomly picking 5 conditions. To do this, create a new CSV file called "echem_reaction_opt_round0.csv" with the 

same 5 columns. Then, add a column called "Yield" and assign "PENDING" to all conditions, as we have not yet started to run 

the actual reactions. The last column should be called "Priority", which indicates the past/next experiments. For completed 

experiments, the number is -1; for suggested experiments, the number is 1; and for the rest, it is 0. This CSV should have the 

exact same number of rows as the search space CSV. Since we have not yet started, the priority is 0 for all experiments at the 

beginning. Then, randomly select 5 initial reaction conditions and assign priority 1 to them. Finally, sort all rows based on 

priority, so that the "1" comes first, followed by 0. Please write all your code in one code block so that I can copy and pas te it 

into a Jupyter Notebook to execute directly. 

User:  

I have completed the first 5 reactions with yields "6, 5, 5, 8, 0". Please write the code to suggest the next 5 experiments. You 

need two functions: 

 

1. update_yield: Takes a CSV file, row number, and yield as input, updates the CSV by changing the pending yield for priority 1 

conditions to observed yields. 

 

2. reaction_optimization: Takes a CSV file ("echem_reaction_opt_roundxxx.csv"), ensures all priority 1 experiments are 

completed (with observed yields), changes their priority to -1, and suggests 5 new experiments using the Optimizer class from 

skopt with a Gaussian process and expected improvement. The new experiments should come from priority 0 rows. Create a 

new CSV with round n+1, update priorities, and sort by priority. 

 

Please write the code in one block and import the necessary modules.experiments, the number is -1; for suggested 

experiments, the number is 1; and for the rest, it is 0. This CSV should have the exact same number of rows as the search spa ce 

CSV. Since we have not yet started, the priority is 0 for all experiments at the beginning. Then, randomly select 5 initial reaction 

conditions and assign priority 1 to them. Finally, sort all rows based on priority, so that the "1" comes first, followed by 0. Please 

write all your code in one code block so that I can copy and paste it into a Jupyter Notebook to execute directly.  
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Figure S32. A representative example of the output generated by the LLM based on the user's 
prompt for the first part of Task 2. The task is repeated for all different base models 100 times, and 

the full conversation, along with all generated code is provided in Spreadsheet SF3. Auto Coding 
Dataset in the Supporting Information. 

  

import pandas as pd 

import itertools 

import random 

 

# Define the parameter space 

substrate_concentration = [0.025, 0.05, 0.075, 0.1, 0.125] 

mediator_eq = [0, 0.25, 0.5, 0.75, 1] 

mediator_type = ['NHPI', 'TCNHPI', 'QD', 'DABCO', 'TEMPO'] 

electrolyte_type = ['LiClO4', 'LiOTf', 'Bu4NClO4', 'Et4NBF4', 'Bu4NPF6'] 

co_solvent_HFIP = [0, 1] 

 

# Generate the search space 

search_space = list(itertools.product(substrate_concentration, mediator_eq, mediator_type, 

electrolyte_type, co_solvent_HFIP)) 

search_space_df = pd.DataFrame(search_space, columns=["Substrate Concentration", "Mediator 

eq.", "Mediator type", "Electrolyte type", "Co solvent HFIP"]) 

 

# Save the entire search space to a CSV 

search_space_df.to_csv("echem_reaction_search_space.csv", index=False) 

 

# Initialize the optimization round 

search_space_df["Yield"] = "PENDING" 

search_space_df["Priority"] = 0 

 

# Randomly select 5 initial conditions 

initial_conditions_indices = random.sample(range(len(search_space_df)), 5) 

 

# Update priority for the initial conditions 

search_space_df.loc[initial_conditions_indices, "Priority"] = 1 

 

# Sort by Priority to move the initial conditions at the top 

search_space_df = search_space_df.sort_values(by="Priority", 

ascending=False).reset_index(drop=True) 

 

# Save the initialization to a CSV 

search_space_df.to_csv("echem_reaction_opt_round0.csv", index=False) 

 

# Display the first few rows of both generated DataFrames 

print("Search Space:") 

print(search_space_df.head()) 

 

print("\nInitial Optimization Round:") 

opt_round_df = search_space_df.query("Priority == 1") 

print(opt_round_df) 
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import pandas as pd 

from skopt import Optimizer 

from skopt.space import Real, Categorical, Integer 

 

# Function to update yield 

def update_yield(csv_file, row_num, yield_value): 

    df = pd.read_csv(csv_file) 

    df.loc[row_num, 'Yield'] = yield_value 

    df.to_csv(csv_file, index=False) 

 

# Function to suggest the next 5 experiments 

def reaction_optimization(csv_file): 

    df = pd.read_csv(csv_file) 

 

    # Check all priority 1 experiments have yields and update their status to -1 

    assert df.loc[df['Priority'] == 1, 'Yield'].apply(lambda x: x != 'PENDING').all(), "Not 

all priority 1 experiments have yields." 

 

    df.loc[df['Priority'] == 1, 'Priority'] = -1 

 

    # Prepare data for the optimizer 

    X = df.loc[df['Priority'] == -1, ['Substrate Concentration', 'Mediator eq.', 'Mediator 

type', 'Electrolyte type', 'Co solvent HFIP']].values 

    y = df.loc[df['Priority'] == -1, 'Yield'].astype(float).values 

 

    # Initialize the optimizer 

    opt = Optimizer(dimensions=space, base_estimator='GP', acq_func='EI') 

 

    # Tell the optimizer the observed data 

    opt.tell(X.tolist(), y.tolist()) 

 

    # Ask for the next 5 points 

    new_points = opt.ask(n_points=5) 

 

    # Convert the new points into a DataFrame 

    new_points_df = pd.DataFrame(new_points, columns=['Substrate Concentration', 'Mediator 

eq.', 'Mediator type', 'Electrolyte type', 'Co solvent HFIP']) 

 

    # Ensure suggested experiments are unique and not already completed 

    for index, row in new_points_df.iterrows(): 

        matched_row = df[(df['Substrate Concentration'] == row['Substrate Concentration']) &  

                         (df['Mediator eq.'] == row['Mediator eq.']) & 

                         (df['Mediator type'] == row['Mediator type']) & 

                         (df['Electrolyte type'] == row['Electrolyte type']) & 

                         (df['Co solvent HFIP'] == row['Co solvent HFIP'])] 

 

        assert matched_row.empty or matched_row['Priority'].iloc[0] != -1, "Suggested 

experiment overlaps with completed one." 

 

    # Update the original DataFrame with new priorities 

    for index, row in new_points_df.iterrows(): 

        df.loc[(df['Substrate Concentration'] == row['Substrate Concentration']) &  

               (df['Mediator eq.'] == row['Mediator eq.']) & 

               (df['Mediator type'] == row['Mediator type']) & 

               (df['Electrolyte type'] == row['Electrolyte type']) & 
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Figure S33. A representative example of the output generated by the LLM based on the user's 
prompt for the second part of Task 2.  

  

               (df['Co solvent HFIP'] == row['Co solvent HFIP']), 'Priority'] = 1 

 

    # Generate the new round CSV file name 

    round_number = int(csv_file.split('_')[-1].split('.')[0].replace('round', '')) 

    new_csv_file = f"echem_reaction_opt_round{round_number + 1}.csv" 

     

    # Sort by priority and save the new DataFrame 

    df = df.sort_values(by='Priority', ascending=False) 

    df.to_csv(new_csv_file, index=False) 

 

# Update the yield for the initial experiments 

update_yield("echem_reaction_opt_round0.csv", 0, 6) 

update_yield("echem_reaction_opt_round0.csv", 1, 5) 

update_yield("echem_reaction_opt_round0.csv", 2, 5) 

update_yield("echem_reaction_opt_round0.csv", 3, 8) 

update_yield("echem_reaction_opt_round0.csv", 4, 0) 

 

# Suggest the next 5 experiments 

reaction_optimization("echem_reaction_opt_round0.csv") 
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def check_csv_conditions(file_names): 

    for file_name in file_names: 

        try: 

            df = pd.read_csv(file_name) 

            # Convert all column names to lower case to handle case insensitivity 

            df.columns = [col.lower() for col in df.columns] 

            if "priority" not in df.columns or "yield" not in df.columns: 

                print(f"{file_name} does not pass: 'priority' or 'yield' column missing") 

                continue  # Skip to the next file 

             

            # Convert 'yield' values to string for a consistent comparison across types 

            negative_priority_yields = df[df['priority'] == -1]['yield'].astype(str).tolist() 

            valid_yields = ['6', '5', '8', '0'] 

 

            if not all(yield_value in valid_yields for yield_value in 

negative_priority_yields): 

                print(f"{file_name} does not pass: Incorrect 'yield' values for priority -1") 

                continue  # Skip to the next file 

 

            # Check the first five rows for columns where priority is 1 

            priority_one_rows = df[df['priority'] == 1].head(5) 

 

            # Define acceptable values for each column as floats 

            substrate_concentrations = [0.025, 0.05, 0.075, 0.1, 0.125] 

            mediator_eqs = [0, 0.25, 0.5, 0.75, 1] 

            mediator_types = ["NHPI", "TCNHPI", "QD", "DABCO", "TEMPO"] 

            electrolyte_types = ["LiClO4", "LiOTf", "Bu4NClO4", "Et4NBF4", "Bu4NPF6"] 

            co_solvents = [0, 1] 

 

            # Prepare to check 'yield' column for all rows where priority is 1 

            yield_values = df[df['priority'] == 1]['yield'].astype(str).tolist() 

            if not all(yield_value == 'PENDING' for yield_value in yield_values): 

                print(f"{file_name} does not pass: 'yield' values for priority 1 are not 

'PENDING'") 

                continue  # Skip to the next file 

 

            # Iterating through each row to check conditions 

            for _, row in priority_one_rows.iterrows(): 

                # Convert numeric column values to float for comparison 

                try: 

                    row_concentration = float(row[0]) 

                    row_eqs = float(row[1]) 

                    row_co_solvent = float(row[4]) 

                except ValueError: 

                    print(f"{file_name} does not pass: Numeric conversion error in data. 

row_concentration = {row[0]}; row_eqs = {row[1]}; row_co_solvent = {row[4]}") 

                    continue 

 

                # Check each column against its respective allowed values 

                if row_concentration not in substrate_concentrations: 

                    print(f"{file_name} does not pass: Incorrect substrate concentration 

{row[0]} in the first column") 

                    continue  # Skip to the next file 

                if row_eqs not in mediator_eqs: 

                    print(f"{file_name} does not pass: Incorrect mediator equivalents 

{row[1]} in the second column") 

                    continue  # Skip to the next file 

                if row[2] not in mediator_types: 

                    print(f"{file_name} does not pass: Incorrect mediator type {row[2]} in 

the third column") 

                    continue  # Skip to the next file 

                if row[3] not in electrolyte_types: 
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Figure S34. An example of Python code used to automate the evaluation of code generated by 
repeatedly prompting an LLM 100 times for Task 2. The generated code is analyzed and graded 

based on the content of the csv files generated from the code given by LLMs. The evaluation 
outcomes, similar to those in Task 1, are merged into SF3. Auto Coding Dataset via function 

process_excel_files described previously, and provided in the Supporting Information. 
  

                if row_eqs not in mediator_eqs: 

                    print(f"{file_name} does not pass: Incorrect mediator equivalents 

{row[1]} in the second column") 

                    continue  # Skip to the next file 

                if row[2] not in mediator_types: 

                    print(f"{file_name} does not pass: Incorrect mediator type {row[2]} in 

the third column") 

                    continue  # Skip to the next file 

                if row[3] not in electrolyte_types: 

                    print(f"{file_name} does not pass: Incorrect electrolyte type {row[3]} in 

the fourth column") 

                    continue  # Skip to the next file 

                if row_co_solvent not in co_solvents: 

                    print(f"{file_name} does not pass: Incorrect co-solvent {row[4]} in the 

fifth column") 

                    continue  # Skip to the next file 

            return True  # Return True immediately upon successful validation of a file 

        except Exception as e: 

            print(f"Error processing file {file_name}: {e}") 

     

    return False  # If no files pass the test, return False 
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Figure S35. A representative user prompt used for tasking the LLM for the first part of Task 3. The 
prompt was crafted by a human using previously described prompt engineering strartegies.3,23 The 

LLM is tasked with generating an initial search space with EDBO22 by reading its documentation. 
The abbreviated portion (...) includes content from the tutorial examples provided by the authors 
of the EDBO package (https://github.com/doyle-lab-ucla/edboplus). 

 

 

Figure S36. A representative user prompt for tasking the LLM in the second part of Task 2. After 

verifying that the LLM-generated code for the first part is executable, this follow-up prompt 
requests the LLM to build upon the existing code and files, providing suggestions on the synthesis 
conditions. 

User:  

Below is an example for the EDBO package (EDBO+: Bayesian reaction optimization as a tool for chemical synthesis) from 

https://github.com/doyle-lab-ucla/edboplus. Please carefully read it: 

``` 

from edbo.plus.optimizer_botorch import EDBOplus 

#### This tutorial covers the basics of running EDBO+: from designing a combinatorial space to running the Bayesian Optimizer. 

## 1. Creating a search scope using EDBO+. 

 

… 

 

##### Again the samples suggested by EDBO+ have priority = +1. In addition, we assign priority = -1 to the experiments that 

we have already run (these are at the bottom of the dataset). 

``` 

 

Please read the above example and help me write code for the optimization of my reaction yield. Below are the possible choices 

of synthesis parameters: 

‘’’ 

Substrate Concentration: 0.025 M, 0.05 M, 0.075 M, 0.1 M, 0.125 M 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

Electrolyte type: LiClO4, LiOTf, Bu4NClO4, Et4NBF4, Bu4NPF6 

Co-solvent HFIP: 0, 1  

‘’’ 

First, the code should suggest the 5 initial experiments I should start with, and I only want to maximize the reaction yield. If 

possible, make sure you write all your code in one code block so that I can copy and paste it into Jupyter Notebook to execute 

directly. You do not need to have further explanation on the code or other instructions. 

User:  

Now I have completed the first 5 reactions in the lab. The observed yields are "6, 5, 5, 8, 0" for suggested reactions 1 to 5 . Their 

conditions are: 

‘’’ 

0.1     0.5     TCNHPI     Bu4NPF6     0 

0.075   0.5     QD         Et4NBF4     1 

0.075   0.5     QD         LiOTf       1 

0.075   0.5     NHPI       LiClO4      1 

0.05    0.5     TEMPO      Et4NBF4     0 

‘’’ 

 

Please write the code to help me suggest the next 5 experiments. Make sure you import related modules and write the code in 

one code block. 
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Figure S37. A representative example of the output generated by the LLM based on the user's 

prompt for the first part of Task 3. The task is repeated for all different base models 100 times, and 
the full conversation, along with all generated code is provided in Spreadsheet SF3. Auto Coding 

Dataset in the Supporting Information.  

# Import necessary libraries 

from edbo.plus.optimizer_botorch import EDBOplus 

import pandas as pd 

 

# Define the reaction components for the search space 

reaction_components = { 

    'substrate_concentration': [0.025, 0.05, 0.075, 0.1, 0.125], 

    'mediator_eq': [0, 0.25, 0.5, 0.75, 1], 

    'mediator_type': ['NHPI', 'TCNHPI', 'QD', 'DABCO', 'TEMPO'], 

    'electrolyte_type': ['LiClO4', 'LiOTf', 'Bu4NClO4', 'Et4NBF4', 'Bu4NPF6'], 

    'co_solvent_HFIP': [0, 1] 

} 

 

# Generate the reaction scope and save it to a CSV file 

EDBOplus().generate_reaction_scope( 

    components=reaction_components,  

    filename='optimization_scope.csv', 

    check_overwrite=False 

) 

 

# Load the generated reaction scope using Pandas 

df_scope = pd.read_csv('optimization_scope.csv') 

 

# Print the number of combinations in the reaction scope 

n_combinations = len(df_scope) 

print(f"Your reaction scope has {n_combinations} combinations.") 

 

# Run EDBO+ to suggest initial experiments 

EDBOplus().run( 

    filename='optimization_scope.csv',  # Previously generated scope 

    objectives=['yield'],  # Objective to be optimized 

    objective_mode=['max'],  # Maximize reaction yield 

    batch=5,  # Number of experiments in parallel that we want to perform in this round 

    columns_features='all',  # Features to be included in the model 

    init_sampling_method='cvtsampling'  # Initialization method 

) 

 

# Load and display the first few experiments from the updated CSV file 

df_edbo = pd.read_csv('optimization_scope.csv') 

print(df_edbo.head(10)) 
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Figure S38. A representative example of the output generated by the LLM based on the user's 
prompt for the second part of Task 3.  

  

# Import necessary libraries 

from edbo.plus.optimizer_botorch import EDBOplus 

import pandas as pd 

 

# Load the created reaction scope file 

df_edbo = pd.read_csv('my_optimization_yield.csv') 

 

# Fill in the observed yields for the first 5 reactions 

df_edbo.loc[df_edbo.index[0], 'yield'] = 6 

df_edbo.loc[df_edbo.index[1], 'yield'] = 5 

df_edbo.loc[df_edbo.index[2], 'yield'] = 5 

df_edbo.loc[df_edbo.index[3], 'yield'] = 8 

df_edbo.loc[df_edbo.index[4], 'yield'] = 0 

 

# Save the updated data with observations to a new CSV file 

df_edbo.to_csv('my_optimization_round1.csv', index=False) 

 

# Check the updated data 

print(df_edbo.head(10)) 

 

# Run EDBO+ again with the updated data to suggest the next experiments 

EDBOplus().run( 

    filename='my_optimization_round1.csv',  # Previous scope (including observations). 

    objectives=['yield'],  # Objective to be optimized. 

    objective_mode=['max'],  # Maximize yield. 

    batch=5,  # Number of experiments in parallel to perform in this round. 

    columns_features='all',  # Include all features in the model. 

    init_sampling_method='cvtsampling'  # Initialization method. 

) 

 

# Load and display the suggested experiments 

df_edbo_next = pd.read_csv('my_optimization_round1.csv') 

print(df_edbo_next.head(10))  # Display the first 10 rows to check the high priority 

experiments 
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def check_csv_conditions(file_names): 

    for file_name in file_names: 

        try: 

            df = pd.read_csv(file_name) 

            # Convert all column names to lower case to handle case insensitivity 

            df.columns = [col.lower() for col in df.columns] 

             

            if "priority" not in df.columns or "yield" not in df.columns: 

                print(f"{file_name} does not pass: 'priority' or 'yield' column missing") 

                continue  # Skip to the next file 

 

            # Convert 'yield' values to string for a consistent comparison across types 

            negative_priority_yields = df[df['priority'] == -1]['yield'].astype(str).tolist() 

            valid_yields = ['6', '5', '8', '0'] 

 

            if not all(yield_value in valid_yields for yield_value in 

negative_priority_yields): 

                print(f"{file_name} does not pass: Incorrect 'yield' values for priority -1. 

{negative_priority_yields }") 

                continue  # Skip to the next file 

 

 

            # Define acceptable values for each column as floats 

            substrate_concentrations = [0.025, 0.05, 0.075, 0.1, 0.125] 

            mediator_eqs = [0, 0.25, 0.5, 0.75, 1] 

            mediator_types = ["NHPI", "TCNHPI", "QD", "DABCO", "TEMPO"] 

            electrolyte_types = ["LiClO4", "LiOTf", "Bu4NClO4", "Et4NBF4", "Bu4NPF6"] 

            co_solvents = [0, 1] 

             

            # Check the first five rows for columns where priority is 1 

            priority_one_rows = df[df['priority'] == 1].head(5) 

             

            # Iterating through each row to check conditions 

            for _, row in priority_one_rows.iterrows(): 

                # Convert numeric column values to float for comparison 

                try: 

                    row_concentration = float(row[0]) 

                    row_eqs = float(row[1]) 

                    row_co_solvent = float(row[4]) 

                except ValueError: 

                    print(f"{file_name} does not pass: Numeric conversion error in data. 

row_concentration = {row[0]}; row_eqs = {row[1]}; row_co_solvent = {row[4]}") 

                    continue 

 

                # Check each column against its respective allowed values 

                if row_concentration not in substrate_concentrations: 

                    print(f"{file_name} does not pass: Incorrect substrate concentration 

{row[0]} in the first column") 

                    continue  # Skip to the next file 

                if row_eqs not in mediator_eqs: 

                    print(f"{file_name} does not pass: Incorrect mediator equivalents 

{row[1]} in the second column") 

                    continue  # Skip to the next file 

                if row[2] not in mediator_types: 

                    print(f"{file_name} does not pass: Incorrect mediator type {row[2]} in  
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Figure S39. An example of Python code used to automate the evaluation of code generated by 
repeatedly prompting an LLM 100 times for Task 3. The generated code is analyzed and graded 

based on the content of the csv files generated from the code given by LLMs. The evaluation 
outcomes, similar to those in Task 1 and Task 2, are merged Spreadsheet SF3. Auto Coding Dataset 

via function process_excel_files described previously, and provided in the Supporting Information. 
 

 

  

the third column") 

                    continue  # Skip to the next file 

                if row[3] not in electrolyte_types: 

                    print(f"{file_name} does not pass: Incorrect electrolyte type {row[3]} in 

the fourth column") 

                    continue  # Skip to the next file 

                if row_co_solvent not in co_solvents: 

                    print(f"{file_name} does not pass: Incorrect co-solvent {row[4]} in the 

fifth column") 

                    continue  # Skip to the next file 

 

            print(f"{file_name} passes all tests") 

            return True 

 

        except Exception as e: 

            print(f"Error processing file {file_name}: {e}") 

     

    return False  # If no files pass the test, return False 
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Section S6. Optimization of Synthesis Conditions 

Prior to initiating the optimization of synthesis conditions, it is essential to define the search space 
systematically. To achieve this, we advocate a hybrid search approach. Initially, we instructed an 

LLM assistant to read and analyze a series of relevant literature identified in Section S2. This 
analysis allowed the extraction of synthesis conditions, which are detailed in Spreadsheet SF4. 

EChem Reaction Optimization Dataset in the Supporting Information. The LLM was then 
employed to propose hypotheses by considering a set of plausible configurations or ranges for the 
search space. Through this process, the following parameters were identified as critical for 

optimization of the electrochemical reaction relevant to this study: (1) concentration of the substrate, 
(2) type of redox mediator, (3) concentration of the mediator, (4) type of electrolyte, (5) additives 

in the solvent, (6) type of base, (7) electrode material, (8) reaction time, (9) current density, and 
(10) reaction atmosphere. This knowledge is primarily derived from summarizing the discussion 
sections of previous literature and examining preliminary trial-and-error efforts reported in the 

previous literature for optimizing reaction yields.  

For the purposes of this study, and to align with the design of our reactor, we focused on the first 

five parameters as primary variables, hypothesizing that each individually influences the yield. 
Additionally, certain combinations between the two parameters could also be significant. To ensure 
consistency, other variables, such as voltage and reaction time, were held constant. Thus, we 

selected parameters 1–5 as the dimensions defining our reaction space.  

Each of these parameters offers numerous possible choices. To manage the complexity and 

practicality of the experiments, we pruned the reaction space to a feasible number of experiments. 
Specifically, we considered five concentrations for the substrate, five types of mediators with five 
different equivalents, five types of electrolytes, and two different solvent systems. This selection 

captures the reaction space defined by availability and amenability, resulting in a total of 1,250 
combinations of reaction conditions for each substrate (Table S15). Note that for the consistency 
of this study, all 8 substrates (Table S16) are assigned the same search space, resulting in a possible 

10,000 electrochemical C-H oxidation reactions that can be potentially examined, and the 
optimization process is independent for each substrate, leading to optimal synthesis conditions for 

each of them rather than having a condition that fits all.  

 

Table S15. Choice of each synthesis parameter. 

Synthesis Paramter Choice 

Concentration (mM) 25, 50, 75, 100, 125 

Electrocatalyst NHPI, TCNHPI, Quinuclidine, DABCO, TEMPO 

Equivalence of Electrocatalyst 0, 0.25, 0.5, 0.75, 1 

Electrolyte 

 

LiClO4, LiOTf , Bu4NClO4,  Et4NBF4, Bu4NPF6 

 

Solvent ACN, ACN/HFIP 
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Table S16. Eight compounds chosen for synthesis parameter optimization. 

No. 
Substrate CAS Number SMILES String 

1 (+)-α-Pinene 7785-70-8 CC1=CCC2CC1C2(C)C 

2 1,4-Dioxaspiro[4.5]dec-6-ene 4683-24-3 C1CC2(C=CC1=O)OCCO2 

3 alpha-Ionone 127-41-3 CC1=CCCC(C1C=CC(=O)C)(C)C 

4 Valencene 4630-07-3 CC1CCC=C2C1(CC(CC2)C(=C)C)C 

5 Theaspirane 36431-72-8 CC1=CCCC(C)(C)C12CCC(C)O2 

6 Pregnenolone acetate 1778-02-5 CC(=O)OC1CCC2(C)C(=CCC3C2CCC2    

(C)C(C(C)=O)CCC32)C1 

7 (-)-Ambroxide 6790-58-5 CC1(CCCC2(C1CCC3(C2CCO3)C)C)C 

8 Valerophenone 1009-14-9 CCCCC(=O)C1=CC=CC=C1 

 

Reaction setup 

The electrolysis was conducted using a 24-well batch reactor equipped with graphite or RVC 
anodes and nickel cathodes (Table S1 and Figure S1). Each vial contained two pairs of anodes and 
cathodes (a total of four electrodes) with interelectrode distances of 3.6 mm and 8.13 mm, 

respectively. The solution containing the substrate (Table S16, 0.025 mM – 0.125 mM), mediator 
(0 – 1 eq.), electrolyte (1 eq.), and pyridine (1 eq.) was prepared by mixing the stock solution of 

each individual component accordingly. The typical stock solution of each of the eight substrates 
ranged from 0.5M to 6M (approximately 50 µL to 500 µL stock solution needed for each reaction). 
The five mediators ranged from 0.1 to 0.3M (typically 0.5 to 2 mL), and the five electrolytes and 

pyridine were dissolved together in acetonitrile to achieve a concentration of 0.8M (typically 100 
µL to 500 µL). Additional acetonitrile, with or without 10 eq. HFIP, was added to make the total 

volume 4 mL. No precautions were taken to exclude air or moisture, and the reactions were run at 
room temperature. The voltage was set to 3.5 V, resulting in a current of 1 mA for every 5 mM 
concentration of reaction (typically starting current is around 200 mA for 24 vials running together, 

each approximately 50 mM). Each vial contained a magnetic stir bar, and the reactions were stirred 
at 600 rpm for 12 hours.  

Reaction analysis 

The resulting solution was evaporated by blowing air through it for 2 hours, and the residue was 
treated with 0.7 mL CDCl3 and subjected to 1H NMR analysis using 1,3,5-trimethoxybenzene 

(420.5 mg in 100 mL of acetonitrile-d3, 25 µmol/mL) added to each well as the internal standard. 
Both proton and carbon NMR analyses were conducted. For purification, typically four vials were 

run under the same optimized conditions (Table S18), and the products were combined. After 
removing the solvent, the residue was redissolved in a small amount of CH2Cl2 and passed through 
a short silica-gel plug with ethyl acetate to remove the electrolyte. The solution was concentrated, 

and the crude material was chromatographed through silica gel, eluting with ethyl acetate/hexanes 
to obtain the product.  
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Table S17. Summary of synthesis parameters under different reaction conditions. The best two 

conditions (A and B) for compounds 1 to 8 are denoted as IA, IB, IIA, IIB, etc. For most compounds, 
the top yield conditions can be similar, although variations are observed across different 

compounds and conditions. Figure 4 primarily reflects the results based on set A conditions. 
Detailed yield data can be found in Tables S18–26. 

 

Procedure Concentration (M) Mediator eq. Mediator Electrolyte HFIP 

IA 0.025 1 TCNHPI LiOTf 1 

IB 0.025 1 TCNHPI Et4NBF4 1 

IIA 0.125 1 NHPI Bu4NPF6 0 

IIB 0.125 0.75 NHPI Bu4NClO4 1 

IIIA 0.025 1 NHPI LiClO4 1 

IIIB 0.025 1 TCNHPI LiClO4 1 

IVA 0.05 1 NHPI LiOTf 0 

IVB 0.025 1 TCNHPI LiOTf 0 

VA 0.025 1 NHPI Et4NBF4 1 

VB 0.025 1 NHPI LiOTf 1 

VIA 0.025 0.25 NHPI Bu4NPF6 1 

VIB 0.025 0.75 QD LiClO4 0 

VIIA 0.125 0.5 QD Bu4NClO4 1 

VIIB 0.125 0.5 QD Et4NBF4 1 

VIIIA 0.05 1 QD Bu4NClO4 1 

VIIIB 0.125 1 QD LiOTf 1 
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Figure S40. Illustration of reaction space and yield from 455 experiments conducted using the 4 
approaches in this study. For the search space on this study, 5 different synthesis parameters were 
chosen: concentration of the substrates and electro-catalysts, choice of electrocatalyst and 

electrolyte, and solvent, resulting in 1250 different combinations, while reaction time, voltage, and 
electrodes were held constant. 
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Characterization data for the electrolysis products 

 

 
Verbenone (1b). The title compound was obtained using the general procedure for synthesis 
optimization, and the synthesis conditions and reaction yields are summarized in Table S18. The 

desired product was obtained as a clear oil. Spectral data matched the values reported in the 
literature.24 
 
1H NMR (500 MHz, Chloroform-d): δ 5.64 (s, 1H), 2.73 (dt, J = 9.2, 5.5 Hz, 1H), 2.56 (td, J = 5.9, 
1.7 Hz, 1H), 2.35 (td, J = 6.2, 1.5 Hz, 1H), 1.99 (d, J = 9.2 Hz, 1H), 1.94 (s, 3H), 1.42 (s, 3H), 0.93 

(s, 3H); 
13C NMR (151 MHz, Chloroform-d ): δ 203.9, 170.1, 121.1, 57.4, 53.9, 49.6, 40.8, 26.5, 23.5, 22.0. 
 

 

 
1,4-Dioxaspiro[4.5]dec-6-en-8-one (2b). The title compound was obtained using the general 

procedure for synthesis optimization, and the synthesis conditions and reaction yields are 
summarized in Table S19. The desired product was obtained as a clear oil. Spectral data matched 
the values reported in the literature.25  

 
1H NMR (500 MHz, Chloroform-d): δ 6.62 (d, J = 10.2 Hz, 1H), 6.01 (d, J = 10.2 Hz, 1H), 4.10 – 

3.99 (m, 4H), 2.64 (t, J = 6.6 Hz, 2H), 2.21 (t, J = 6.5 Hz, 2H);  
13C NMR (151 MHz, Chloroform-d ): δ 198.8, 146.4, 130.6, 65.1, 35.3, 32.9. 
 

 

 
3,5,5-Trimethyl-4-(3-oxobut-1-en-1-yl)cyclohex-2-en-1-one (3b). The title compound was 
obtained using the general procedure for synthesis optimization, and the synthesis conditions and 

reaction yields are summarized in Table S20. The desired product was obtained as a colorless oil. 
Spectral data matched the values reported in the literature.26,27 
 
1H NMR (500 MHz, Chloroform-d): δ 6.68 (dd, J = 15.8, 9.5 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 
5.99 (s, 1H), 2.72 (d, J = 9.5 Hz, 1H), 2.37 (d, J = 16.9 Hz, 1H), 2.29 (s, 3H), 2.16 (d, J = 16.9 Hz, 

1H), 1.90 (s, 3H), 1.08 (s, 3H),  1.01 (s, 3H);  
13C NMR (151 MHz, Chloroform-d ): δ 198.3, 197.6, 159.2, 143.6, 133.7, 126.9, 55.4, 47.3, 36.7, 
27.9, 27.6, 27.3, 23.5. 
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Nootkatone (4b). The title compound was obtained using the general procedure for synthesis 
optimization, and the synthesis conditions and reaction yields are summarized in Table S21. The 

desired product was obtained as a yellow liquid. Spectral data matched the values reported in the 
literature.24 
 
1H NMR (500 MHz, Chloroform-d): δ 5.76 (s, 1H), 4.76 – 4.71 (m, 2H), 2.56 – 2.46 (m, 1H), 2.41 
– 2.18 (m, 4H), 2.06 – 1.94 (m, 3H), 1.71 (s, 3H),  1.41 – 1.28 (m, 1H), 1.11 (s, 3H), 1.40 – 1.35 

(m, 2H), 0.95 (d, J = 6.8 Hz, 3H);  
13C NMR (151 MHz, Chloroform-d ): δ 199.6, 170.5, 149.0, 124.7, 109.3, 43.9, 42.1, 40.5, 40.3, 
39.3, 33.0, 31.6, 20.8, 16.8, 14.9. 

 
 

 
Theaspirone (5b). The title compound was obtained using the general procedure for synthesis 

optimization, and the synthesis conditions and reaction yields are summarized in Table S22. The 
desired product was obtained as a colorless oil. Spectral data matched the values reported in the 
literature24. 

 
1H NMR (500 MHz, Chloroform-d): δ.5.75 (t, J = 1.4 Hz, 1H), 2.24 – 2.15  (m, 1H), 2.40 (d, J = 

17.0 Hz, 1H), 2.32 (dd, J = 13.7, 8.4 Hz, 1H), 2.20 (d, J = 17.1 Hz, 1H), 2.18 – 2.10 (m, 1H), 2.05 
– 1.99  (m, 1H), 1.97 (d, J = 9.1 Hz, 3H), 1.84 – 1.76 (m, 1 H), 1.54 – 1.45 (m, 1H), 1.30 (d, J = 
6.0 Hz, 3H), 1.07 – 0.97 (m, 6H),;  
13C NMR (151 MHz, Chloroform-d ): δ 198.4, 168.4, 124.9, 88.5, 77.7, 50.2, 40.8, 34.3, 32.7, 24.4, 
23.0, 20.5, 19.0. 

 
 

 
7,20-Dioxopregn-5-en-3-beta-yl acetate (6b). The title compound was obtained using the general 

procedure for synthesis optimization, and the synthesis conditions and reaction yields are 
summarized in Table S23. The desired product was obtained as a white solid. Spectral data matched 
the values reported in the literature.24,28 
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1H NMR (500 MHz, Chloroform-d): δ 5.75 (s, 1H), 4.72 (tt, J = 11.6, 4.6 Hz, 1H), 2.73 (ddd, J = 
13.7, 8.9, 5.6 Hz, 1H), 2.62 – 2.56 (m, 1H), 2.52 – 2.37 (m, 3H), 2.17 – 2.08 (m, 1H), 2.05 (s, 3H), 

2.02 – 1.24 (m, 18H), 0.89 (s, 3H); 
13C NMR (151 MHz, Chloroform-d ): δ 209.8, 201.2, 170.3, 126.5, 72.1, 62.3, 50.0, 45.2, 44.4, 

38.4, 37.6, 36.0, 31.6, 27.3, 26.5, 23.6, 21.2, 17.3, 13.3. 
 
 

 
Norambreinolide (7b). The title compound was obtained using the general procedure for synthesis 

optimization, and the synthesis conditions and reaction yields are summarized in Table S24. The 
desired product was obtained as a white solid. Spectral data Spectroscopic properties were identical 

to a commercial sample. 
 
1H NMR (500 MHz, Chloroform-d): δ 2.41 (dd, J = 16.3, 14.7 Hz, 1H), 2.23 (dd, J = 16.2, 6.5 Hz, 

1H), 2.08 (dt, J = 11.9, 3.4 Hz, 1H), 1.97 (dd, J = 14.8, 6.5 Hz, 1H), 1.88 (dq, J = 14.3, 3.5 Hz, 1H),  
1.72 – 1.61 (m, 2H), 1.48 – 1.36 (m, 3H), 1.33 (s, 3H), 1.27 – 1.14 (m, 2H), 1.08 – 1.01 (m, 2H), 

0.92 (s, 3H), 0.89 (s, 3H), 0.84 (s, 3H);  
13C NMR (151 MHz, Chloroform-d ): δ 176.9, 86.3, 59.0, 56.5, 42.3, 39.5, 38.7, 36.0, 33.2, 33.1, 
28.7, 21.6, 20.9, 20.6, 18.1, 15.1. 

 
 

 
1-Phenyl-1,4-pentanedione (8b). The title compound was obtained using the general procedure 

for synthesis optimization, and the synthesis conditions and reaction yields are summarized in 
Table S25. The desired product was obtained as a clear oil. Spectral data matched the values 

reported in the literature.29 
 
1H NMR (500 MHz, Chloroform-d): δ 7.99 – 7.94 (m, 2H), 7.58 – 7.52 (m, 1H), 7.48 – 7.40 (m, 

1H),  3.31 – 3.22 (m, 2H), 2.90 – 2.83 (m, 2H), 2.25 (s, 3H);  
13C NMR (151 MHz, Chloroform-d ): δ 207.3, 198.5, 136.6, 133.4, 128.3, 37.0, 32.4, 30.1. 
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Table S18. Synthesis conditions and reaction yield for compound 1 (four reactions per iteration). 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 5 0.1 0.25 QD Bu4NClO4 0 0 

0.075 0.5 NHPI LiClO4 1 8 0.125 0.25 DABCO Et4NBF4 1 0 

0.1 0.5 TCNHPI Bu4NPF6 0 6 0.1 0.25 DABCO Et4NBF4 1 0 

0.05 0.5 TEMPO LiClO4 0 0 0.05 0.25 TCNHPI LiClO4 0 7 

0.125 0.5 NHPI Et4NBF4 1 5 0.1 0.25 NHPI Bu4NPF6 1 12 

0.125 0 NHPI LiOTf 1 0 0.1 0.5 TEMPO Bu4NPF6 0 0 

0.025 1 NHPI Bu4NPF6 1 5 0.1 0.5 DABCO LiOTf 1 0 

0.025 0.75 TCNHPI Et4NBF4 1 55 0.1 0.75 DABCO LiOTf 1 0 

0.1 0.25 TEMPO Bu4NClO4 0 0 0.05 0.0 DABCO LiClO4 0 0 

0.05 1 TCNHPI LiClO4 1 37 0.1 1.0 TEMPO LiOTf 1 0 

0.025 0 TCNHPI Et4NBF4 1 0 0.1 0.75 NHPI LiClO4 1 5 

0.025 0 TCNHPI Bu4NClO4 1 0 0.05 0.25 NHPI Et4NBF4 1 17 

0.075 1 TCNHPI Et4NBF4 0 15 0.05 0.5 DABCO Et4NBF4 1 0 

0.05 0.75 TCNHPI Et4NBF4 0 27 0.075 0.0 TEMPO LiOTf 0 0 

0.025 1 TCNHPI LiOTf 1 60 0.125 0.5 TCNHPI Et4NBF4 0 7 

0.025 1 TCNHPI Et4NBF4 1 59 0.05 1.0 DABCO Bu4NPF6 0 0 

0.075 1 TCNHPI Bu4NPF6 0 19 0.1 0.0 DABCO LiOTf 1 0 

0.025 1 TCNHPI Bu4NPF6 1 33 0.05 0.0 QD LiClO4 0 0 

0.025 0.75 TCNHPI LiOTf 1 54 0.05 0.5 TEMPO Bu4NClO4 1 0 

0.025 0.75 QD LiOTf 0 5 0.1 0.25 TCNHPI LiOTf 0 14 

0.125 0 DABCO LiClO4 0 0 0.075 0.25 TCNHPI Et4NBF4 1 7 

0.075 0.5 QD Et4NBF4 0 0 0.125 0.75 NHPI LiOTf 0 5 

0.05 0.75 TCNHPI Bu4NClO4 0 15 0.025 0.5 NHPI LiClO4 0 5 

0.025 1 TCNHPI Bu4NClO4 1 40 0.05 0.0 DABCO Et4NBF4 1 0 

0.125 1 TCNHPI LiOTf 1 31 0.025 0.0 DABCO Bu4NClO4 1 0 

0.125 1 QD Bu4NClO4 0 0 0.025 0.0 TCNHPI LiClO4 0 0 

0.125 1 NHPI LiOTf 1 12 0.075 0.25 TCNHPI Bu4NPF6 0 8 

0.125 0.75 DABCO LiOTf 1 0 0.1 1.0 TCNHPI LiOTf 0 22 

0.125 1 NHPI Et4NBF4 0 13 0.025 0.5 NHPI Bu4NClO4 0 0 

0.1 0.75 TEMPO LiClO4 1 0 0.075 0.0 NHPI Bu4NClO4 1 0 

0.1 0 NHPI LiClO4 0 0 0.1 0.75 TCNHPI Bu4NPF6 1 16 

0.05 1 TCNHPI Et4NBF4 1 43 0.125 0.25 DABCO Bu4NClO4 1 0 

0.1 0.5 TEMPO LiOTf 0 0 0.05 0.5 DABCO LiClO4 0 0 

0.1 0.25 TEMPO LiClO4 1 0 0.075 1.0 NHPI LiOTf 0 23 

0.05 1 TCNHPI LiOTf 1 31 0.05 0.25 TEMPO Bu4NClO4 1 0 

0.05 0.75 NHPI Bu4NClO4 0 10 0.125 0.25 NHPI Et4NBF4 0 7 

0.125 1 TEMPO LiOTf 1 0 0.05 0.25 NHPI Et4NBF4 0 24 

0.125 0.25 QD Bu4NClO4 0 0 0.075 1.0 TEMPO Et4NBF4 1 0 

0.075 0 TCNHPI LiOTf 1 0 0.075 1.0 TCNHPI Bu4NClO4 0 21 

0.05 0.75 TCNHPI Et4NBF4 1 28 0.1 0.25 TCNHPI LiOTf 0 14 

0.1 0.25 TEMPO Et4NBF4 1 5 0.075 0.5 QD Bu4NClO4 0 0 

0.075 1 DABCO Bu4NClO4 1 0 0.125 0.0 QD Et4NBF4 1 0 

0.05 0.75 TCNHPI Bu4NClO4 1 10 0.1 0.5 NHPI Et4NBF4 1 5 

0.025 1 TCNHPI Et4NBF4 0 42 0.1 0.75 TCNHPI Bu4NClO4 1 17 
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Table S19. Synthesis conditions and reaction yield for compound 2 (four reactions per iteration). 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.1 0 TEMPO Et4NBF4 1 0 

0.075 0.5 NHPI LiClO4 1 9 0.125 0.25 TEMPO Et4NBF4 1 0 

0.1 0.5 TCNHPI Bu4NPF6 0 23 0.1 0 TEMPO Bu4NClO4 1 0 

0.05 0.5 TEMPO LiClO4 0 0 0.025 0.5 TCNHPI LiClO4 1 10 

0.125 1 TCNHPI LiOTf 0 14 0.05 1 TCNHPI LiClO4 1 5 

0.125 0.25 NHPI Bu4NPF6 0 45 0.05 1 TEMPO LiClO4 1 0 

0.125 0 TCNHPI Bu4NPF6 1 0 0.025 0.75 QD Et4NBF4 1 8 

0.025 0 TCNHPI Bu4NPF6 0 0 0.05 1 QD LiClO4 0 4 

0.125 1 NHPI Et4NBF4 0 14 0.075 0 NHPI Bu4NClO4 1 0 

0.125 0.75 DABCO Bu4NPF6 1 0 0.075 0 DABCO Bu4NPF6 1 0 

0.125 0 NHPI LiOTf 0 0 0.025 0.75 TEMPO Bu4NClO4 0 0 

0.1 0.75 NHPI LiClO4 0 6 0.125 0.25 NHPI Bu4NPF6 1 33 

0.1 1 NHPI Bu4NClO4 0 50 0.1 0.25 TEMPO Bu4NPF6 0 0 

0.1 0.5 NHPI Bu4NPF6 0 42 0.1 0.75 TEMPO Bu4NPF6 1 0 

0.05 0.5 NHPI Et4NBF4 0 13 0.05 0.25 TCNHPI Bu4NClO4 1 5 

0.05 0.25 QD LiOTf 0 7 0.05 0.25 QD LiOTf 1 3 

0.125 1 NHPI Bu4NPF6 0 59 0.075 0 QD LiClO4 0 0 

0.05 0.25 NHPI LiClO4 0 3 0.125 0.5 QD Bu4NPF6 1 10 

0.025 1 NHPI Bu4NPF6 0 12 0.05 0.25 TCNHPI LiClO4 1 8 

0.025 0.5 NHPI Bu4NPF6 0 12 0.1 0.75 DABCO LiClO4 1 0 

0.125 1 NHPI Bu4NClO4 0 40 0.075 0.75 NHPI LiOTf 1 32 

0.125 0.75 NHPI Bu4NClO4 1 55 0.075 0.75 DABCO LiOTf 1 0 

0.125 0 DABCO LiClO4 0 0 0.1 0.75 TEMPO LiClO4 1 0 

0.1 1 NHPI Bu4NPF6 0 34 0.125 0.75 TEMPO LiOTf 1 0 

0.125 1 NHPI Bu4NPF6 1 12 0.05 0.25 NHPI Bu4NClO4 0 14 

0.125 0.25 NHPI Bu4NClO4 0 28 0.1 0.5 DABCO Bu4NPF6 0 0 

0.1 1 QD Bu4NClO4 0 10 0.125 0.5 DABCO Bu4NPF6 0 0 

0.075 1 NHPI Et4NBF4 1 22 0.1 1 NHPI Bu4NPF6 0 34 

0.125 1 NHPI Bu4NPF6 1 43 0.1 0.75 QD LiClO4 0 4 

0.125 1 NHPI Bu4NClO4 1 47 0.075 1 QD LiOTf 1 7 

0.125 0.5 TCNHPI Bu4NPF6 0 15 0.025 1 TCNHPI Bu4NPF6 1 15 

0.1 1 QD Bu4NClO4 1 16 0.075 1 QD Et4NBF4 1 8 

0.125 1 TEMPO Et4NBF4 1 0 0.125 0 QD Bu4NClO4 1 0 

0.125 0.5 QD Bu4NPF6 1 10 0.075 1 TEMPO LiOTf 1 0 

0.125 0 NHPI Bu4NClO4 1 0 0.05 1 QD LiClO4 1 0 

0.075 0.75 TCNHPI Et4NBF4 0 17 0.025 0.5 TEMPO Bu4NPF6 0 0 

0.125 0.75 NHPI Bu4NPF6 1 53 0.125 1 TEMPO Bu4NClO4 0 0 

0.125 0.75 NHPI Bu4NPF6 0 53 0.05 0.75 TCNHPI Bu4NClO4 0 18 

0.075 0.5 NHPI Bu4NClO4 0 30 0.125 0.75 TEMPO Bu4NClO4 1 3 

0.05 0.5 TEMPO Bu4NClO4 1 0 0.025 0.5 NHPI LiOTf 1 17 

0.125 1 DABCO Et4NBF4 0 0 0.075 1 NHPI Bu4NClO4 0 38 

0.125 0.75 NHPI LiOTf 0 46 0.125 0.25 TCNHPI LiClO4 0 5 

0.125 0.5 NHPI Bu4NClO4 0 42 0.125 0.5 TEMPO Bu4NPF6 1 0 

0.025 0.25 DABCO Et4NBF4 0 0 0.075 0.25 NHPI Bu4NPF6 0 29 
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Table S20. Synthesis conditions and reaction yield for compound 3 (four reactions per iteration). 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.075 0 NHPI Bu4NClO4 0 0 

0.075 0.5 NHPI LiClO4 1 15 0.05 0 DABCO Bu4NClO4 1 0 

0.1 0.5 TCNHPI Bu4NPF6 0 14 0.05 0.5 TEMPO Et4NBF4 0 0 

0.05 0.5 TEMPO LiClO4 0 3 0.025 0.5 TCNHPI Bu4NClO4 1 20 

0.125 1 NHPI Bu4NPF6 1 19 0.025 0 TCNHPI Et4NBF4 1 0 

0.125 0.75 TCNHPI LiOTf 0 0 0.05 0.5 QD LiOTf 1 5 

0.125 0.5 NHPI Et4NBF4 0 2 0.025 0.5 TCNHPI Bu4NClO4 1 20 

0.125 0 TCNHPI LiOTf 1 0 0.1 1 NHPI Et4NBF4 0 14 

0.125 1 TCNHPI Bu4NPF6 1 18 0.075 0.5 QD LiClO4 0 3 

0.125 1 QD Bu4NPF6 1 0 0.1 0.5 TEMPO Et4NBF4 0 0 

0.05 0.25 NHPI Bu4NPF6 1 25 0.075 0.5 QD Et4NBF4 0 0 

0.025 1 NHPI Bu4NPF6 1 41 0.05 1 NHPI LiClO4 0 26 

0.125 0.75 TEMPO LiClO4 1 0 0.125 0.75 NHPI Et4NBF4 1 13 

0.125 0.5 TEMPO LiOTf 0 0 0.05 0.25 TEMPO Et4NBF4 1 0 

0.125 0 TCNHPI LiClO4 1 0 0.025 0.5 TCNHPI Bu4NClO4 1 20 

0.025 1 NHPI Bu4NPF6 0 23 0.1 0.25 NHPI Et4NBF4 0 6 

0.125 1 TCNHPI Bu4NPF6 0 21 0.05 0 NHPI Bu4NClO4 1 0 

0.125 0.5 TEMPO LiClO4 1 0 0.075 0.75 QD LiClO4 1 10 

0.025 0.75 TEMPO LiOTf 1 0 0.1 1 TEMPO Bu4NClO4 1 0 

0.025 0.25 DABCO Bu4NPF6 1 0 0.1 0.5 TEMPO Bu4NClO4 0 0 

0.125 0 QD Et4NBF4 0 0 0.025 0.25 NHPI LiClO4 1 35 

0.1 1 TEMPO LiOTf 1 0 0.05 0.75 NHPI Bu4NClO4 0 24 

0.075 1 TCNHPI LiOTf 0 14 0.05 0 NHPI LiClO4 0 0 

0.025 0.75 NHPI LiOTf 1 49 0.025 0.75 TCNHPI Bu4NClO4 0 20 

0.075 0.25 NHPI LiOTf 1 36 0.025 0.5 DABCO Et4NBF4 1 0 

0.05 0.5 NHPI Et4NBF4 0 11 0.025 0.25 TEMPO LiClO4 1 0 

0.025 1 NHPI LiOTf 1 27 0.075 0 TCNHPI LiClO4 0 0 

0.025 0.25 TCNHPI Bu4NPF6 1 16 0.125 0.5 DABCO Et4NBF4 0 0 

0.1 0.75 TEMPO Et4NBF4 1 0 0.075 0 TEMPO LiOTf 0 0 

0.1 0 NHPI Bu4NPF6 1 0 0.05 0 TCNHPI Bu4NClO4 0 0 

0.05 1 TCNHPI Bu4NClO4 0 13 0.125 0.25 DABCO LiOTf 0 0 

0.025 0 NHPI LiOTf 0 0 0.025 0.5 TCNHPI LiOTf 0 22 

0.05 1 DABCO Bu4NClO4 1 0 0.05 1 QD LiClO4 1 15 

0.025 1 NHPI LiClO4 1 56 0.05 0.5 TCNHPI Et4NBF4 1 19 

0.025 1 NHPI Et4NBF4 1 27 0.05 1 TEMPO Et4NBF4 1 3 

0.025 0.75 TCNHPI LiClO4 1 29 0.125 0.5 TCNHPI Bu4NPF6 1 12 

0.125 1 TEMPO LiOTf 1 0 0.025 0.5 NHPI LiOTf 0 33 

0.125 1 TEMPO LiOTf 0 0 0.125 0.5 NHPI Et4NBF4 0 2 

0.05 1 NHPI LiClO4 1 29 0.025 0.75 QD LiClO4 1 15 

0.025 1 TCNHPI LiClO4 1 55 0.075 0 TCNHPI Bu4NClO4 0 0 

0.125 1 TCNHPI LiOTf 1 25 0.05 0.5 TEMPO LiOTf 1 0 

0.125 1 TCNHPI LiOTf 0 19 0.025 0 NHPI LiOTf 1 0 

0.125 1 TCNHPI LiClO4 1 15 0.025 0.25 TCNHPI LiOTf 1 16 

0.125 1 TCNHPI LiClO4 0 7 0.075 0 TEMPO Bu4NPF6 1 0 
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Table S21. Synthesis conditions and reaction yield for compound 4 (four reactions per iteration). 

 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.125 0 QD Et4NBF4 0 0 

0.075 0.5 NHPI LiClO4 1 22 0.025 0.25 QD Bu4NPF6 0 0 

0.1 0.5 TCNHPI Bu4NPF6 0 11 0.025 1 QD Bu4NPF6 0 0 

0.05 0.5 TEMPO LiClO4 0 5 0.075 0.25 QD Bu4NPF6 1 4 

0.125 0 NHPI LiOTf 1 0 0.1 0.25 TCNHPI Bu4NPF6 1 11 

0.1 0.5 DABCO LiOTf 0 0 0.075 0.5 NHPI Et4NBF4 0 20 

0.025 1 NHPI Bu4NPF6 1 18 0.1 0.5 DABCO LiClO4 1 0 

0.025 0.75 TCNHPI Bu4NClO4 1 21 0.1 0 NHPI LiOTf 0 0 

0.05 0 NHPI Et4NBF4 1 0 0.075 0.5 TEMPO Bu4NClO4 0 0 

0.025 1 TCNHPI LiClO4 1 29 0.075 0 NHPI Bu4NClO4 0 0 

0.025 1 TCNHPI Bu4NPF6 1 6 0.05 0.5 DABCO LiClO4 1 0 

0.025 0.75 TEMPO Et4NBF4 0 0 0.1 1 DABCO Bu4NClO4 1 0 

0.125 1 TCNHPI LiClO4 1 0 0.075 0.25 DABCO LiClO4 1 0 

0.1 1 NHPI LiClO4 1 0 0.125 0.5 DABCO LiClO4 1 0 

0.1 1 NHPI LiClO4 0 0 0.05 0.5 NHPI Et4NBF4 1 25 

0.075 0.25 TCNHPI Et4NBF4 0 0 0.125 0.5 TCNHPI Et4NBF4 0 4 

0.125 0.5 QD Et4NBF4 1 6 0.1 0 TCNHPI LiOTf 0 0 

0.025 0.75 QD LiClO4 1 8 0.025 0.75 NHPI Bu4NPF6 1 15 

0.025 0.25 QD LiOTf 0 6 0.125 0.75 QD Et4NBF4 1 5 

0.025 0 QD LiClO4 1 0 0.125 0.5 TCNHPI Et4NBF4 1 4 

0.1 0.75 DABCO LiOTf 0 0 0.075 0 QD Et4NBF4 0 0 

0.05 1 NHPI Et4NBF4 1 56 0.025 1 DABCO LiClO4 0 0 

0.025 1 TCNHPI LiOTf 1 61 0.1 0 TCNHPI LiClO4 1 0 

0.025 0.75 DABCO Et4NBF4 0 0 0.1 0.25 QD LiOTf 0 5 

0.125 0.75 NHPI Bu4NPF6 0 24 0.075 0 TCNHPI Bu4NPF6 1 0 

0.1 0.75 DABCO LiClO4 1 0 0.05 0.75 TEMPO Et4NBF4 0 0 

0.05 1 TCNHPI Et4NBF4 1 25 0.075 0.5 DABCO LiClO4 1 0 

0.025 1 TCNHPI LiOTf 0 60 0.125 0.75 QD Bu4NPF6 0 21 

0.125 0 TCNHPI LiOTf 0 0 0.125 0.5 NHPI Bu4NClO4 1 7 

0.075 0.75 TEMPO Et4NBF4 1 0 0.125 0 TEMPO LiOTf 0 0 

0.05 1 TCNHPI LiOTf 1 55 0.1 0 TEMPO Et4NBF4 1 0 

0.025 0 TCNHPI LiOTf 1 0 0.05 1 DABCO Et4NBF4 0 0 

0.1 0.5 NHPI LiClO4 1 11 0.125 1 DABCO Bu4NClO4 1 0 

0.025 1 TCNHPI Bu4NClO4 0 30 0.075 0.25 DABCO Bu4NClO4 0 0 

0.025 1 NHPI LiOTf 1 59 0.025 1 DABCO LiClO4 1 0 

0.025 1 NHPI Et4NBF4 1 48 0.075 1 TCNHPI Bu4NPF6 1 9 

0.125 0.25 TEMPO LiOTf 1 3 0.125 0.75 NHPI LiClO4 0 0 

0.075 0.75 NHPI LiOTf 0 26 0.075 0.75 DABCO LiOTf 0 0 

0.05 1 NHPI LiOTf 1 61 0.125 0.5 DABCO LiClO4 0 0 

0.05 1 NHPI LiOTf 0 61 0.025 0 TCNHPI Et4NBF4 0 0 

0.125 0 DABCO Bu4NPF6 1 11 0.075 0 TEMPO Bu4NClO4 1 0 

0.05 1 NHPI LiClO4 1 18 0.075 0.25 TCNHPI LiOTf 1 29 

0.05 1 NHPI Bu4NClO4 1 45 0.025 0 TEMPO Et4NBF4 1 0 

0.025 1 NHPI LiOTf 0 58 0.125 0.25 QD LiOTf 0 5 
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Table S22. Synthesis conditions and reaction yield for compound 5 (four reactions per iteration). 

  

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.05 0 DABCO Et4NBF4 0 0 

0.075 0.5 NHPI LiClO4 1 17 0.125 0 QD Bu4NClO4 0 0 

0.1 0.5 TCNHPI Bu4NPF6 0 6 0.1 1 NHPI Bu4NPF6 1 24 

0.05 0.5 TEMPO LiClO4 0 0 0.075 0.25 QD Bu4NClO4 1 8 

0.125 0.5 NHPI Et4NBF4 1 24 0.05 0 DABCO Bu4NPF6 0 0 

0.125 0 NHPI LiOTf 1 0 0.075 1 TEMPO Bu4NClO4 1 0 

0.025 1 NHPI Bu4NPF6 1 21 0.075 0 QD LiOTf 0 0 

0.025 0.75 TCNHPI Et4NBF4 1 5 0.025 0.5 NHPI LiClO4 0 18 

0.125 1 NHPI Et4NBF4 0 10 0.025 0.75 DABCO Bu4NPF6 1 0 

0.125 0.25 NHPI Bu4NPF6 1 6 0.125 0 TEMPO Bu4NPF6 1 0 

0.125 0 NHPI Et4NBF4 0 0 0.05 0.25 NHPI Et4NBF4 1 19 

0.05 0 NHPI Et4NBF4 0 0 0.025 1 NHPI LiOTf 0 30 

0.125 1 NHPI LiClO4 1 15 0.1 1 QD Et4NBF4 0 17 

0.125 1 NHPI LiClO4 0 16 0.1 1 TEMPO LiClO4 0 0 

0.075 1 TEMPO LiOTf 1 0 0.075 0 TEMPO LiOTf 0 0 

0.025 1 QD Bu4NPF6 1 34 0.125 1 DABCO Bu4NPF6 0 0 

0.125 1 QD Bu4NPF6 1 12 0.125 0.5 TCNHPI Et4NBF4 0 6 

0.1 0.75 QD Bu4NClO4 1 19 0.075 0.75 TEMPO Bu4NPF6 1 0 

0.075 0.5 TCNHPI Et4NBF4 1 30 0.05 0.25 TCNHPI Bu4NClO4 1 10 

0.05 1 QD LiClO4 1 23 0.025 0.5 QD Bu4NClO4 1 16 

0.125 1 TCNHPI Et4NBF4 1 0 0.075 0 NHPI Bu4NPF6 0 0 

0.1 0.5 TCNHPI Bu4NClO4 1 28 0.05 0.25 DABCO Bu4NClO4 0 0 

0.025 1 NHPI LiOTf 0 30 0.1 0.25 NHPI LiClO4 0 7 

0.025 0.75 DABCO LiOTf 0 0 0.125 0.5 TCNHPI LiOTf 0 8 

0.05 1 QD Bu4NClO4 1 15 0.05 0.75 TEMPO LiClO4 1 0 

0.025 1 NHPI Bu4NPF6 0 17 0.025 0.75 TEMPO LiClO4 0 0 

0.025 0.25 NHPI Et4NBF4 0 11 0.125 0.75 TEMPO Bu4NClO4 1 3 

0.025 0 QD Bu4NPF6 1 0 0.125 0.5 NHPI Bu4NClO4 0 11 

0.1 0.75 TEMPO LiOTf 0 0 0.1 0.75 NHPI Bu4NClO4 1 23 

0.1 0 NHPI Et4NBF4 0 0 0.05 0.25 NHPI LiClO4 1 26 

0.05 1 TCNHPI Bu4NClO4 0 17 0.025 0.25 DABCO LiClO4 1 0 

0.025 1 NHPI LiClO4 1 41 0.025 0 DABCO Et4NBF4 0 0 

0.1 0.5 TEMPO LiClO4 1 0 0.125 1 DABCO LiOTf 1 0 

0.1 0.5 NHPI LiOTf 1 39 0.1 0 QD Bu4NClO4 0 0 

0.05 1 QD LiClO4 0 37 0.05 0.5 QD Et4NBF4 1 15 

0.025 1 NHPI LiOTf 1 52 0.025 0.75 TCNHPI LiOTf 1 20 

0.125 0.75 TCNHPI LiOTf 0 17 0.1 1 TEMPO LiOTf 1 0 

0.1 0.75 NHPI Bu4NPF6 0 23 0.1 1 NHPI LiOTf 0 39 

0.1 0 TCNHPI LiOTf 0 0 0.025 0.5 DABCO LiOTf 1 0 

0.025 0.25 DABCO LiClO4 1 0 0.1 0.5 NHPI Bu4NClO4 0 14 

0.125 0.5 NHPI LiClO4 1 10 0.075 0.75 QD Et4NBF4 1 17 

0.1 0.75 TCNHPI Bu4NClO4 1 6 0.125 1 QD LiClO4 0 15 

0.05 1 NHPI LiOTf 0 9 0.075 0.25 TEMPO Bu4NPF6 1 0 

0.025 1 NHPI Et4NBF4 1 54 0.075 0.25 TEMPO LiClO4 1 0 
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Table S23. Synthesis conditions and reaction yield for compound 6 (four reactions per iteration). 

 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.075 1 TCNHPI LiOTf 0 20 

0.075 0.5 NHPI LiClO4 1 20 0.05 0.75 TEMPO LiOTf 1 0 

0.1 0.5 TCNHPI Bu4NPF6 0 8 0.05 1 TEMPO Bu4NClO4 1 0 

0.05 0.5 TEMPO LiClO4 0 0 0.125 0.25 TEMPO Bu4NPF6 0 0 

0.125 0.5 NHPI Et4NBF4 1 10 0.125 0.75 TCNHPI Bu4NPF6 0 5 

0.125 0 NHPI LiOTf 1 0 0.025 0 DABCO LiClO4 0 0 

0.025 0.75 TCNHPI Et4NBF4 1 17 0.025 0.75 TEMPO LiOTf 1 0 

0.025 0.5 QD LiOTf 1 45 0.075 0 TEMPO Et4NBF4 1 0 

0.125 0.75 DABCO Et4NBF4 1 0 0.1 0.75 DABCO LiOTf 0 21 

0.1 0 QD Bu4NPF6 1 0 0.075 0.5 NHPI Bu4NClO4 1 32 

0.05 1 QD Et4NBF4 1 47 0.075 0.5 NHPI Bu4NClO4 0 32 

0.025 1 QD LiOTf 1 34 0.025 0.5 DABCO Et4NBF4 0 0 

0.075 0 QD Bu4NClO4 0 0 0.025 0 QD Bu4NClO4 0 10 

0.025 1 QD LiOTf 0 71 0.1 0 TEMPO Bu4NClO4 0 0 

0.025 1 QD Bu4NPF6 1 38 0.075 0.25 TEMPO Et4NBF4 0 0 

0.025 0.75 QD LiClO4 0 73 0.05 0 DABCO LiOTf 1 0 

0.1 0.75 QD LiClO4 0 0 0.025 0 QD Bu4NPF6 0 0 

0.025 1 QD LiClO4 0 4 0.05 1 NHPI Bu4NClO4 0 51 

0.025 1 NHPI Bu4NClO4 0 60 0.075 0 QD Bu4NPF6 1 0 

0.025 0.75 QD LiOTf 0 12 0.1 0.25 TEMPO LiClO4 1 0 

0.025 1 NHPI Et4NBF4 0 50 0.05 0.5 NHPI Bu4NPF6 1 41 

0.025 1 NHPI Bu4NPF6 0 35 0.025 1 TCNHPI Et4NBF4 0 24 

0.025 0.75 TEMPO Bu4NPF6 1 0 0.025 1 TEMPO Et4NBF4 0 3 

0.025 0.25 TEMPO LiClO4 1 0 0.025 0 TEMPO LiOTf 0 0 

0.125 0.75 NHPI Bu4NPF6 1 12 0.1 1 DABCO Bu4NClO4 0 0 

0.05 1 TEMPO Et4NBF4 0 0 0.075 0.75 DABCO Bu4NPF6 1 0 

0.025 1 NHPI LiOTf 1 70 0.05 0 NHPI Bu4NPF6 0 0 

0.025 0.25 NHPI Bu4NPF6 1 81 0.05 0.5 TCNHPI Bu4NClO4 1 22 

0.1 1 DABCO Bu4NClO4 1 0 0.1 0 DABCO Bu4NPF6 1 0 

0.05 0.5 NHPI LiOTf 0 75 0.1 0.5 DABCO Bu4NPF6 0 0 

0.025 0.75 NHPI LiOTf 1 57 0.125 0.5 NHPI Bu4NClO4 0 18 

0.025 0 NHPI LiOTf 1 0 0.1 0 NHPI Et4NBF4 1 0 

0.075 0.75 NHPI LiClO4 0 25 0.025 0.25 DABCO Et4NBF4 1 0 

0.05 0.5 NHPI Bu4NPF6 1 41 0.05 0.25 DABCO LiOTf 0 0 

0.025 0 NHPI LiClO4 0 0 0.125 0.25 TCNHPI LiClO4 0 0 

0.025 0 NHPI Et4NBF4 0 0 0.125 0 TEMPO Bu4NClO4 0 0 

0.125 0.25 TCNHPI LiClO4 0 0 0.1 0 TEMPO LiOTf 1 0 

0.025 1 NHPI LiOTf 0 68 0.025 0.75 TEMPO Bu4NClO4 1 0 

0.025 0.5 TCNHPI Bu4NClO4 0 24 0.075 0.25 QD LiClO4 0 8 

0.025 0.25 NHPI Et4NBF4 0 43 0.125 1 NHPI LiClO4 1 14 

0.075 0 QD LiClO4 0 0 0.05 1 DABCO Bu4NClO4 0 0 

0.05 0.75 NHPI LiOTf 0 50 0.025 0 DABCO Bu4NPF6 1 0 

0.05 0 DABCO Bu4NPF6 0 0 0.05 0 TEMPO LiOTf 0 0 

0.025 1 NHPI LiClO4 0 49 0.125 0.75 TEMPO LiOTf 0 0 
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Table S24. Synthesis conditions and reaction yield for compound 7 (four reactions per iteration). 

  

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 22 0.075 1 DABCO LiClO4 1 15 

0.075 0.5 NHPI LiClO4 1 13 0.125 0.75 TEMPO Bu4NClO4 0 0 

0.1 0.5 TCNHPI Bu4NPF6 0 0 0.125 0 TCNHPI Et4NBF4 0 0 

0.05 0.5 TEMPO LiClO4 0 0 0.025 0.5 TCNHPI LiOTf 0 5 

0.125 1 QD LiOTf 1 0 0.025 1 DABCO LiClO4 1 0 

0.125 0.75 QD Et4NBF4 1 36 0.05 0.25 TCNHPI Et4NBF4 1 5 

0.025 0 QD Et4NBF4 1 0 0.075 0.75 DABCO Bu4NPF6 0 0 

0.025 0 DABCO Bu4NClO4 1 0 0.125 1 NHPI Bu4NClO4 1 16 

0.125 1 NHPI Et4NBF4 1 18 0.075 0.25 QD LiOTf 0 15 

0.125 0 NHPI Et4NBF4 0 0 0.125 0 QD LiClO4 1 0 

0.05 1 TCNHPI LiClO4 0 4 0.125 0 NHPI LiClO4 0 0 

0.05 0.5 TCNHPI Bu4NClO4 1 14 0.025 0.5 QD Bu4NClO4 1 11 

0.075 0.25 TCNHPI Et4NBF4 1 0 0.075 0.5 TCNHPI LiOTf 0 7 

0.025 1 QD Et4NBF4 1 0 0.05 0.25 QD LiClO4 0 15 

0.025 0.75 QD Et4NBF4 1 0 0.05 0 DABCO Bu4NClO4 1 0 

0.025 0.75 NHPI Et4NBF4 1 3 0.05 0.75 QD Bu4NPF6 1 4 

0.125 1 QD LiClO4 1 35 0.125 0.5 TEMPO Bu4NPF6 1 0 

0.125 1 QD Bu4NPF6 1 0 0.1 0.75 DABCO LiOTf 1 0 

0.125 0.5 QD Bu4NClO4 1 41 0.125 0 QD Bu4NClO4 0 0 

0.125 1 QD Bu4NClO4 1 28 0.125 1 NHPI Bu4NPF6 1 0 

0.125 1 QD Bu4NClO4 0 18 0.05 0.25 TCNHPI Et4NBF4 0 4 

0.125 0 QD LiClO4 1 0 0.1 0.75 DABCO Bu4NPF6 1 0 

0.1 0 QD Bu4NClO4 1 0 0.125 1 TCNHPI Et4NBF4 1 0 

0.075 0.5 QD Bu4NClO4 0 32 0.025 0 DABCO LiOTf 1 0 

0.125 0.75 QD LiClO4 1 41 0.125 0.25 QD Bu4NPF6 1 17 

0.125 0.75 QD Bu4NClO4 1 19 0.025 0.5 QD Bu4NClO4 1 11 

0.125 0.5 QD Et4NBF4 0 41 0.125 1 TEMPO Et4NBF4 1 0 

0.1 0.75 NHPI LiClO4 1 34 0.075 0 NHPI Et4NBF4 1 0 

0.125 0.75 QD LiClO4 0 18 0.125 0.5 DABCO LiClO4 1 0 

0.125 0.5 QD LiClO4 0 26 0.075 0 TEMPO Et4NBF4 0 0 

0.1 0.75 QD LiClO4 0 40 0.1 0.75 DABCO Bu4NPF6 1 0 

0.05 0.25 QD LiOTf 0 13 0.075 0.25 QD LiOTf 0 15 

0.125 0.75 TEMPO LiClO4 0 0 0.1 0.5 TCNHPI Et4NBF4 1 22 

0.125 0.75 TEMPO Et4NBF4 1 0 0.1 0.25 TEMPO Bu4NClO4 1 0 

0.125 0.25 TCNHPI Et4NBF4 0 7 0.025 0.25 TEMPO Bu4NClO4 0 0 

0.025 1 QD Et4NBF4 0 5 0.075 1 TCNHPI LiClO4 0 8 

0.125 0.5 QD Et4NBF4 1 40 0.125 0 TCNHPI LiOTf 0 0 

0.075 0.75 NHPI Bu4NClO4 0 22 0.025 0.5 NHPI LiOTf 0 5 

0.075 0 TCNHPI Bu4NPF6 0 0 0.1 0.75 QD Bu4NClO4 0 29 

0.05 0 TEMPO LiOTf 0 0 0.125 0.75 TEMPO Bu4NPF6 0 0 

0.125 0.75 NHPI LiClO4 0 31 0.05 0 TCNHPI LiOTf 1 0 

0.1 1 QD Et4NBF4 1 38 0.05 0.75 TEMPO Bu4NPF6 1 0 

0.1 0.75 TCNHPI LiOTf 1 5 0.075 0.5 NHPI LiClO4 1 13 

0.1 0.75 QD Et4NBF4 1 33 0.05 0.25 QD Bu4NPF6 0 9 
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Table S25. Synthesis conditions and reaction yield for compound 8 (four reactions per iteration). 

 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 16 0.05 0.75 TEMPO Bu4NClO4 1 0 

0.075 0.5 NHPI LiClO4 1 0 0.05 1 QD Bu4NPF6 0 10 

0.1 0.5 TCNHPI Bu4NPF6 0 0 0.1 1 NHPI Bu4NPF6 1 3 

0.05 0.5 TEMPO LiClO4 0 0 0.125 0.75 NHPI Bu4NClO4 1 0 

0.125 0.75 QD Et4NBF4 0 19 0.025 0.25 DABCO LiClO4 1 0 

0.125 0.75 QD LiOTf 1 21 0.125 1 DABCO Et4NBF4 0 0 

0.025 0 QD Et4NBF4 0 0 0.1 0.5 QD LiOTf 1 14 

0.025 0 DABCO Bu4NClO4 0 0 0.1 0 NHPI Bu4NPF6 1 0 

0.125 1 QD LiOTf 1 33 0.025 0 NHPI Et4NBF4 1 0 

0.125 1 QD Et4NBF4 1 9 0.075 0.25 TEMPO Et4NBF4 0 0 

0.125 1 QD Bu4NPF6 1 5 0.025 1 QD LiClO4 0 16 

0.125 0 TEMPO LiOTf 0 0 0.1 1 NHPI Bu4NPF6 1 3 

0.125 0.75 TEMPO LiClO4 1 0 0.05 0 TCNHPI Bu4NPF6 0 0 

0.125 0.5 TEMPO LiOTf 0 0 0.075 0.5 DABCO Bu4NClO4 1 0 

0.05 0.5 DABCO LiOTf 0 0 0.125 0 TEMPO LiOTf 0 0 

0.025 1 QD LiOTf 0 24 0.125 0 TEMPO LiOTf 1 0 

0.125 1 QD LiOTf 0 0 0.125 0.25 NHPI Bu4NPF6 0 0 

0.125 0.5 NHPI LiOTf 0 2 0.025 0 NHPI Bu4NPF6 0 0 

0.125 0 QD LiOTf 0 0 0.05 0.75 TCNHPI Et4NBF4 1 5 

0.075 0.75 QD LiOTf 0 14 0.1 0.25 TCNHPI Bu4NPF6 1 0 

0.1 0.75 TCNHPI LiOTf 1 0 0.075 0.5 TCNHPI Et4NBF4 1 0 

0.075 0.75 QD LiOTf 1 14 0.125 0 TEMPO Bu4NPF6 1 0 

0.05 1 QD Bu4NClO4 1 45 0.1 0.75 QD Bu4NPF6 0 7 

0.025 1 TCNHPI LiOTf 1 4 0.025 0 DABCO Et4NBF4 0 0 

0.125 1 TEMPO LiOTf 1 0 0.1 0.75 QD LiClO4 0 11 

0.125 1 TEMPO LiOTf 0 0 0.025 0 NHPI LiOTf 1 0 

0.125 1 TEMPO LiClO4 1 0 0.1 1 DABCO Et4NBF4 0 0 

0.125 1 TEMPO LiClO4 0 0 0.125 0.5 TCNHPI Bu4NPF6 0 0 

0.125 1 TEMPO Et4NBF4 1 0 0.075 1 DABCO Et4NBF4 0 0 

0.125 1 TEMPO Et4NBF4 0 0 0.1 0.5 NHPI LiOTf 1 5 

0.125 1 TEMPO Bu4NPF6 1 0 0.075 0.25 DABCO Bu4NClO4 0 0 

0.125 1 TEMPO Bu4NPF6 0 0 0.05 0.75 QD LiClO4 0 17 

0.1 0.25 TCNHPI LiClO4 0 2 0.1 0.5 TCNHPI Bu4NClO4 1 0 

0.075 0.75 DABCO Bu4NClO4 0 0 0.05 0 DABCO Bu4NClO4 0 0 

0.05 1 TEMPO Bu4NClO4 1 0 0.05 0.5 NHPI Bu4NPF6 1 0 

0.025 1 QD LiClO4 1 20 0.025 0.5 QD LiClO4 1 19 

0.125 1 TEMPO Bu4NClO4 1 0 0.05 0.75 TEMPO Bu4NClO4 0 0 

0.125 1 TEMPO Bu4NClO4 0 0 0.05 1 NHPI Et4NBF4 1 7 

0.125 1 TCNHPI LiOTf 1 0 0.025 1 TEMPO Bu4NPF6 1 0 

0.125 1 TCNHPI LiOTf 0 0 0.025 0.25 NHPI Bu4NPF6 0 0 

0.125 1 TCNHPI LiClO4 1 0 0.125 0.75 TEMPO Bu4NClO4 0 0 

0.125 1 TCNHPI LiClO4 0 0 0.05 0 TEMPO Bu4NPF6 0 0 

0.125 1 TCNHPI Et4NBF4 1 0 0.05 0.75 TEMPO LiOTf 0 0 

0.125 1 TCNHPI Et4NBF4 0 0 0.025 1 TCNHPI Bu4NClO4 1 8 
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Table S26. Synthesis conditions and reaction yield for compound 1 (five reactions per iteration). 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.1 0.5 TCNHPI Bu4NPF6 0 6 0.125 1.0 TEMPO LiClO4 0 0 

0.075 0.5 QD Et4NBF4 1 5 0.1 0.25 TEMPO Et4NBF4 0 0 

0.075 0.5 QD LiOTf 1 5 0.025 0.5 QD Bu4NClO4 0 0 

0.075 0.5 NHPI LiClO4 1 8 0.025 1.0 QD Et4NBF4 1 5 

0.05 0.5 TEMPO Et4NBF4 0 0 0.1 0.25 DABCO Bu4NClO4 1 0 

0.125 1 NHPI Bu4NPF6 1 10 0.05 0.0 TCNHPI Bu4NClO4 0 0 

0.125 0.5 TCNHPI LiClO4 1 7 0.1 0.0 TEMPO Bu4NPF6 1 0 

0.125 0 NHPI LiClO4 1 0 0.075 0.0 TCNHPI LiClO4 0 0 

0.025 1 TCNHPI Bu4NPF6 1 33 0.025 0.5 QD LiClO4 0 0 

0.025 0 NHPI LiClO4 0 0 0.1 0.75 NHPI LiClO4 0 0 

0.125 0.5 DABCO Bu4NPF6 1 0 0.1 1.0 DABCO Bu4NClO4 1 0 

0.075 0.25 TEMPO Bu4NPF6 1 0 0.075 0.75 DABCO LiClO4 0 0 

0.025 1 DABCO Bu4NPF6 1 0 0.05 0.25 QD Bu4NPF6 0 0 

0.025 0.75 TEMPO LiOTf 0 0 0.1 0.0 TEMPO Bu4NClO4 1 0 

0.025 0.25 TCNHPI Bu4NPF6 1 12 0.05 0.0 NHPI Et4NBF4 1 0 

0.1 1 TCNHPI Bu4NPF6 0 19 0.05 0.0 NHPI LiClO4 1 0 

0.05 0.75 TCNHPI Et4NBF4 0 27 0.125 0.75 QD Bu4NClO4 0 0 

0.025 1 TCNHPI LiOTf 1 60 0.1 0.25 DABCO Bu4NPF6 0 0 

0.025 1 TCNHPI LiClO4 1 51 0.075 0.0 TEMPO Bu4NPF6 1 0 

0.025 1 TCNHPI Et4NBF4 1 59 0.075 0.25 TEMPO LiOTf 1 0 

0.1 0.75 NHPI Bu4NPF6 1 7 0.125 0.25 TCNHPI Bu4NClO4 0 5 

0.075 0.5 QD Bu4NPF6 1 6 0.075 0.75 NHPI Bu4NPF6 1 19 

0.025 1 TCNHPI Bu4NClO4 1 40 0.075 0.75 NHPI LiOTf 0 22 

0.025 0.75 TCNHPI Bu4NClO4 1 31 0.1 0.75 TEMPO Et4NBF4 0 0 

0.025 0.75 NHPI LiOTf 1 10 0.1 0.75 TEMPO Bu4NPF6 0 0 

0.125 0.25 TEMPO LiOTf 1 0 0.05 0.0 NHPI Et4NBF4 1 0 

0.1 1 QD Bu4NClO4 1 0 0.05 1.0 NHPI LiClO4 1 23 

0.05 1 TCNHPI LiOTf 1 31 0.125 0.5 TEMPO Bu4NPF6 1 0 

0.05 0.75 NHPI Bu4NClO4 0 10 0.025 0.75 TEMPO Bu4NClO4 1 0 

0.025 1 TCNHPI LiOTf 0 43 0.1 0.0 QD Bu4NClO4 0 0 

0.125 1 TCNHPI Bu4NClO4 1 20 0.075 0.5 NHPI LiOTf 1 20 

0.125 0.25 NHPI LiClO4 1 5 0.075 0.0 TEMPO LiOTf 1 0 

0.1 0.75 TCNHPI Et4NBF4 1 18 0.1 0.5 TEMPO LiClO4 0 0 

0.05 1 TCNHPI Et4NBF4 1 43 0.1 0.5 DABCO Bu4NPF6 0 0 

0.025 0 DABCO LiOTf 1 0 0.075 1.0 DABCO LiOTf 0 0 

0.125 1 TEMPO LiOTf 1 0 0.075 0.25 NHPI Bu4NPF6 0 24 

0.125 1 TEMPO LiOTf 0 0 0.075 0.75 TEMPO Bu4NPF6 1 0 

0.125 1 TEMPO LiClO4 1 0 0.1 0.25 DABCO LiClO4 0 0 

0.125 1 TEMPO LiClO4 0 0 0.125 0.5 TEMPO LiClO4 1 0 

0.125 1 TEMPO Et4NBF4 1 0 0.1 1.0 QD Et4NBF4 1 0 

0.125 1 TEMPO Et4NBF4 0 0 0.075 0.0 TEMPO Bu4NPF6 1 0 

0.125 1 TEMPO Bu4NPF6 1 0 0.025 0.5 QD Et4NBF4 1 5 

0.125 1 TEMPO Bu4NPF6 0 0 0.125 0.0 DABCO LiClO4 0 0 

0.125 1 TEMPO Bu4NClO4 1 0 0.05 1.0 DABCO Bu4NClO4 1 0 

0.125 1 TEMPO Bu4NClO4 0 0 0.075 1.0 TEMPO Et4NBF4 1 0 



 S84 

 

 

Table S27. Synthesis conditions and reaction yield for compound 1 (three reactions per iteration). 

0.125 1 TCNHPI LiOTf 1 31 0.1 0.0 TEMPO LiOTf 1 0 

0.125 1 TCNHPI LiOTf 0 30 0.05 1.0 DABCO Et4NBF4 0 0 

0.125 1 TCNHPI LiClO4 1 23 0.1 0.25 TCNHPI Et4NBF4 1 5 

0.125 1 TCNHPI LiClO4 0 20 0.075 0.25 TEMPO LiClO4 1 0 

0.125 1 TCNHPI Et4NBF4 1 32 0.025 1.0 TCNHPI Bu4NClO4 0 26 

0.125 1 TCNHPI Et4NBF4 0 16 0.1 1.0 TCNHPI Et4NBF4 1 19 

0.125 1 TCNHPI Bu4NPF6 1 5 0.05 0.5 TCNHPI Bu4NPF6 1 15 

0.125 1 TCNHPI Bu4NPF6 0 5 0.025 0.75 DABCO Et4NBF4 1 0 

0.125 1 TCNHPI Bu4NClO4 0 5 0.05 0.5 DABCO LiClO4 0 0 

0.125 1 QD LiOTf 1 0 0.05 0.75 TCNHPI Bu4NPF6 1 27 

Active Learning Random Sampling 

Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield Substrate Conc. Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0.075 0.5 QD Et4NBF4 1 5 0.125 0.25 TEMPO Et4NBF4 1 0 

0.075 0.5 NHPI LiClO4 1 8 0.025 0.0 QD Bu4NPF6 1 5 

0.1 0.5 TCNHPI Bu4NPF6 0 6 0.125 0.25 TEMPO Et4NBF4 0 0 

0.125 1 TEMPO LiOTf 1 0 0.025 0.75 QD Et4NBF4 0 0 

0.125 0 DABCO LiClO4 0 0 0.1 0.25 NHPI Et4NBF4 1 7 

0.025 0 NHPI LiClO4 0 0 0.1 0.75 DABCO Bu4NPF6 1 0 

0.125 0.75 NHPI LiOTf 0 5 0.075 0.5 DABCO Et4NBF4 0 0 

0.05 1 NHPI Bu4NPF6 1 58 0.125 0 TCNHPI LiClO4 1 0 

0.025 0.75 TCNHPI Bu4NPF6 1 39 0.075 0.25 DABCO LiOTf 1 0 

0.05 0.5 NHPI Bu4NPF6 1 60 0.075 0.5 TCNHPI Bu4NClO4 0 10 

0.025 1 QD Bu4NPF6 1 3 0.05 0.25 DABCO Et4NBF4 1 5 

0.025 0 NHPI Bu4NPF6 1 0 0.05 1.0 DABCO LiOTf 0 0 

0.1 1 NHPI Et4NBF4 1 16 0.075 0.75 NHPI Bu4NClO4 1 12 

0.1 0.5 TEMPO Bu4NPF6 0 0 0.075 1.0 QD LiClO4 1 5 

0.025 0.75 TEMPO Et4NBF4 1 0 0.075 0.25 QD Et4NBF4 0 0 

0.125 1 NHPI Bu4NPF6 1 10 0.1 0.25 TCNHPI Bu4NPF6 1 3 

0.025 1 NHPI Bu4NPF6 1 5 0.075 0.75 TEMPO LiClO4 1 0 

0.025 0.75 DABCO Et4NBF4 1 0 0.1 0.0 TEMPO Bu4NClO4 1 0 

0.125 0.25 NHPI LiClO4 0 5 0.1 0.25 DABCO Bu4NPF6 0 0 

0.05 0.75 TCNHPI LiClO4 1 25 0.125 0.75 DABCO Bu4NClO4 1 0 

0.025 0 NHPI LiClO4 1 0 0.075 0.0 DABCO LiOTf 1 0 

0.025 1 QD LiClO4 1 0 0.05 0.25 QD LiOTf 0 5 

0.025 0.5 DABCO Bu4NClO4 1 0 0.1 1.0 QD LiOTf 1 7 

0.025 0 TCNHPI LiOTf 0 0 0.025 1.0 DABCO Bu4NClO4 1 0 

0.125 1 TEMPO LiOTf 0 0 0.05 0.5 TEMPO Bu4NClO4 1 0 

0.125 1 TCNHPI Bu4NPF6 1 5 0.05 0.25 DABCO Et4NBF4 0 0 

0.125 0.5 TEMPO Et4NBF4 0 0 0.1 0.25 DABCO Bu4NPF6 1 0 

0.125 1 TEMPO LiClO4 1 0 0.025 0.5 NHPI Bu4NPF6 0 13 

0.125 1 TEMPO LiClO4 0 0 0.05 0 DABCO Bu4NPF6 1 0 

0.125 1 TEMPO Et4NBF4 1 0 0.05 0.75 DABCO Et4NBF4 0 0 

0.125 1 TEMPO Et4NBF4 0 0 0.1 0.75 QD Bu4NClO4 0 0 

0.125 1 TEMPO Bu4NPF6 1 0 0.1 1.0 QD Bu4NPF6 1 0 

0.125 1 TEMPO Bu4NPF6 0 0 0.1 1.0 DABCO LiClO4 0 0 
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Figure S41. Highest reaction yield for compound 1 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S18. 

 
 
 

 
 

Figure S42. Highest reaction yield for compound 2 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S19. 
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Figure S43. Highest reaction yield for compound 3 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S20. 

 
 

 
 
 

 
 

Figure S44. Highest reaction yield for compound 4 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S21. 
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Figure S45. Highest reaction yield for compound 5 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S22. 

 
 

 

 
 

Figure S46. Highest reaction yield for compound 6 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S23. 
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Figure S47. Highest reaction yield for compound 7 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S24. 

 
 

 
 
 

 
 

Figure S48. Highest reaction yield for compound 8 achieved in each iteration, using the active 
learning approach and random sampling as demonstrated in Table S25. 

 

 
 

 
 
 

 



 S89 

 

 
 

Figure S49. Distribution of outcomes in C-H oxidation reaction 1. A total of 455 reaction 
conditions were investigated for this compound by exploring different batch sizes and active 

learning approaches. Around half of the reactions resulted in a yield lower than 5%, indicating little 
to no desired product formation from alpha-pinene to verbenone, while the rest achieved yields of 
up to 60%. 

 
 

Table S28. Summary of reaction yields optimized for each compound in this study, achieved by 
combining ML and LLM without inputting any chemical knowledge. The results are compared 
with the yield range obtained by humans, either by reproducing electrochemical synthesis 

conditions reported in the literature or through manual optimization. The range is determined by 
running the conditions in 4 parallel vials under similar conditions, and the yield reported in the 

original literature is also provided.   

Compound 
Optimized Reaction 

Yield (%) 

Reproducing Using 

Literature Condition or 

Manual Optimization (%) 

Electrochemical 

Condition Reported 

by Literature (%) 

1 60 57-67 6724 

2 59 48-62 N/A 

3 56 50-60 N/A 

4 61 60-74 7724 

5 54 47-57 4924 and 6324 

6 81 75-90 8124 

7 41 40-63 N/A 

8 45 45-55 5830 
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Table S29. Synthesis conditions suggested by LLM without ML and measured reaction yields for 
compound 1 (four reactions per iteration). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iteration Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0 0.075 0.5 QD Et4NBF4 1 5 

0 0.075 0.5 NHPI LiClO4 1 8 

0 0.1 0.5 TCNHPI Bu4NPF6 0 6 

0 0.05 0.5 TEMPO LiClO4 0 0 

1 0.1 1 NHPI LiClO4 1 0 

1 0.05 0.25 DABCO Bu4NPF6 0 0 

1 0.125 0.5 TEMPO Et4NBF4 1 0 

1 0.1 0.75 TCNHPI LiOTf 1 17 

2 0.075 1 TCNHPI Bu4NPF6 1 21 

2 0.125 0.75 NHPI LiOTf 0 5 

2 0.025 0.5 QD Et4NBF4 1 5 

2 0.05 1 DABCO LiClO4 1 0 

3 0.1 0.75 NHPI Bu4NClO4 1 5 

3 0.125 1 TCNHPI LiClO4 1 23 

3 0.075 0.5 TEMPO Bu4NPF6 1 0 

3 0.05 0.25 QD LiOTf 1 0 

4 0.1 1 TCNHPI Bu4NClO4 1 20 

4 0.125 0.75 NHPI Et4NBF4 1 6 

4 0.075 1 DABCO Bu4NPF6 1 0 

4 0.05 0.5 TEMPO LiOTf 1 0 

5 0.125 0.75 TCNHPI LiOTf 1 29 

5 0.1 0.75 NHPI Et4NBF4 1 6 

5 0.075 0.25 TCNHPI LiClO4 1 0 

5 0.05 1 NHPI Bu4NPF6 1 58 

6 0.075 1 NHPI Bu4NClO4 1 12 

6 0.05 0.75 NHPI LiOTf 1 28 

6 0.125 1 TCNHPI Bu4NPF6 0 5 

6 0.1 0.5 NHPI LiClO4 1 0 

7 0.025 1 NHPI Bu4NPF6 1 5 

7 0.075 0.75 TCNHPI Et4NBF4 1 17 

7 0.1 1 NHPI LiOTf 1 12 

7 0.05 0.25 NHPI Bu4NClO4 1 10 

8 0.075 1 NHPI Et4NBF4 1 13 

8 0.1 0.75 TCNHPI LiOTf 1 17 

8 0.05 0.75 NHPI LiClO4 1 18 

8 0.125 0.5 TCNHPI Bu4NClO4 1 5 

9 0.1 1 NHPI Bu4NClO4 1 7 

9 0.075 0.5 TCNHPI LiOTf 1 14 

9 0.05 1 TCNHPI Bu4NPF6 1 33 

9 0.1 0.25 NHPI Et4NBF4 1 7 

10 0.075 1 TCNHPI LiClO4 1 23 

10 0.1 0.75 NHPI Bu4NPF6 1 7 

10 0.125 0.25 TCNHPI LiOTf 1 0 

10 0.05 1 NHPI LiOTf 1 31 
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Table S30. Synthesis conditions suggested by LLM without ML and measured reaction yields for 
compound 1 (five reactions per iteration). 

Iteration Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0 0.1 0.5 TCNHPI Bu4NPF6 0 6 

0 0.075 0.5 QD Et4NBF4 1 5 

0 0.075 0.5 QD LiOTf 1 5 

0 0.075 0.5 NHPI LiClO4 1 8 

0 0.05 0.5 TEMPO Et4NBF4 0 0 

1 0.1 0.75 NHPI LiClO4 1 5 

1 0.125 0.5 NHPI Bu4NPF6 1 0 

1 0.075 0.5 DABCO LiClO4 1 0 

1 0.1 0.5 NHPI LiOTf 1 10 

1 0.05 1 TCNHPI Bu4NPF6 0 5 

2 0.1 0.5 NHPI Et4NBF4 1 5 

2 0.075 0.5 QD Bu4NClO4 1 0 

2 0.05 0.5 TCNHPI LiClO4 1 11 

2 0.1 0.75 NHPI Bu4NClO4 1 5 

2 0.125 0.5 QD LiOTf 1 0 

3 0.05 0.5 TCNHPI LiOTf 1 20 

3 0.025 0.75 NHPI LiOTf 1 10 

3 0.1 0.5 NHPI Bu4NPF6 1 7 

3 0.075 0.25 DABCO LiOTf 1 0 

3 0.1 0.5 TEMPO LiClO4 1 0 

4 0.05 0.75 TCNHPI LiOTf 1 31 

4 0.05 0.75 NHPI LiOTf 1 28 

4 0.075 0.5 TCNHPI Bu4NClO4 1 5 

4 0.025 0.5 TCNHPI LiClO4 1 58 

4 0.1 0.75 TCNHPI LiClO4 1 20 

5 0.025 1 TCNHPI LiClO4 1 51 

5 0.025 0.75 NHPI LiClO4 1 0 

5 0.05 1 NHPI LiOTf 1 31 

5 0.025 0.5 TCNHPI Et4NBF4 1 59 

5 0.05 0.5 NHPI Bu4NClO4 1 10 

6 0.025 1 TCNHPI Et4NBF4 1 59 

6 0.05 0.5 TCNHPI Bu4NPF6 1 15 

6 0.05 0.75 NHPI Bu4NPF6 1 59 

6 0.025 0.5 TCNHPI Bu4NPF6 1 10 

6 0.05 0.75 NHPI Et4NBF4 1 20 

7 0.025 1 NHPI LiOTf 1 6 

7 0.025 1 TCNHPI Bu4NClO4 1 20 

7 0.05 1 TCNHPI LiClO4 1 37 

7 0.05 1 NHPI LiClO4 1 32 

7 0.05 1 NHPI Bu4NClO4 1 23 

8 0.025 1 NHPI Et4NBF4 1 24 

8 0.025 1 TCNHPI LiOTf 1 60 

8 0.05 0.5 NHPI Et4NBF4 1 3 

8 0.075 1 TCNHPI Et4NBF4 1 14 

8 0.075 1 NHPI Bu4NPF6 1 18 
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Table S31. Synthesis conditions suggested by LLM without ML and measured reaction yields for 

compound 1 (three reactions per iteration). 
  

9 0.025 0.75 TCNHPI Bu4NPF6 1 39 

9 0.05 1 TCNHPI Bu4NClO4 1 5 

9 0.025 0.5 NHPI Bu4NPF6 1 7 

9 0.1 1 TCNHPI Bu4NPF6 1 0 

9 0.05 0.25 NHPI LiClO4 1 16 

10 0.025 0.5 NHPI Et4NBF4 1 0 

10 0.025 0.25 TCNHPI LiClO4 1 43 

10 0.05 0 TCNHPI LiOTf 1 0 

10 0.1 0.25 NHPI LiOTf 1 9 

10 0.125 0.5 NHPI LiClO4 1 0 

Iteration Substrate 
Conc. 

Mediator 
eq. 

Mediator Electrolyte Co 
solvent  

Yield 

0 0.075 0.5 QD Et4NBF4 1 5 

0 0.075 0.5 NHPI LiClO4 1 8 

0 0.1 0.5 TCNHPI Bu4NPF6 0 6 

1 0.1 0.75 NHPI LiClO4 1 5 

1 0.05 0.5 TEMPO Bu4NPF6 1 0 

1 0.125 1 TCNHPI Et4NBF4 0 16 

2 0.1 1 DABCO LiOTf 1 0 

2 0.125 0.5 QD Bu4NClO4 0 0 

2 0.05 0.75 TCNHPI LiClO4 1 25 

3 0.025 1 TCNHPI LiClO4 0 56 

3 0.1 0.75 NHPI Bu4NClO4 0 5 

3 0.075 0.5 TEMPO LiOTf 1 0 

4 0.05 1 TCNHPI LiClO4 1 37 

4 0.075 1 TCNHPI Bu4NClO4 0 0 

4 0.025 0.75 NHPI Et4NBF4 1 8 

5 0.05 0.75 TCNHPI LiOTf 1 31 

5 0.025 0.5 NHPI Bu4NPF6 1 7 

5 0.1 1 QD Et4NBF4 1 0 

6 0.075 1 TCNHPI LiOTf 1 8 

6 0.025 1 TCNHPI Bu4NClO4 1 40 

6 0.1 0.75 DABCO LiClO4 0 0 

7 0.125 1 TCNHPI LiClO4 1 23 

7 0.05 1 NHPI LiOTf 1 31 

7 0.075 0.75 TEMPO Bu4NPF6 1 0 

8 0.05 1 TCNHPI Et4NBF4 0 36 

8 0.1 0.5 NHPI LiOTf 0 5 

8 0.075 1 QD LiClO4 1 0 

9 0.125 0.75 TCNHPI LiOTf 0 19 

9 0.05 0.5 NHPI Bu4NPF6 0 59 

9 0.075 0.25 TEMPO LiOTf 0 0 

10 0.025 0.75 NHPI Bu4NPF6 0 0 

10 0.05 0.75 NHPI Bu4NPF6 1 59 

10 0.1 1 TCNHPI Bu4NPF6 0 19 
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Figure S50. A representative user prompt in a zero-shot conversation where the user directly asks 
an LLM to mimic a human analyzing data by trends and providing suggestions. The user specifies 

the exact chemical context and the choice of synthesis parameters and provides a template for the 
output to formulate the answer from the LLM. Note that no machine learning is involved in this 

process; the LLM acts as a black box optimizer, and the response is based entirely on empirical 
knowledge. The prompt can be adjusted to have three / four / five reactions per iteration. 

User: Act as a professional researcher in organic chemistry. You are asked to analyze the data and propose synthesis parameters 

to run experiments to maximize the yield for electrochemical C-H oxidation of alpha-pinene (CC1=CCC2CC1C2(C)C). The reaction 

varies with different substrate concentrations, different mediator compounds and equivalents related to the substrate, various 

electrolytes, and the choice of using acetonitrile only or an acetonitrile/HFIP cosolvent. Below are the options for each synthesis 

parameter; note that due to experimental limitations, they are discrete. The other synthesis parameters, such as voltage, 

electrodes, and temperature, are kept constant throughout the experiment .  

``` 

Substrate Concentration (M): 0.025, 0.05, 0.075, 0.1, 0.125 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

Electrolyte type: LiClO4, LiOTf , Bu4NClO4, Et4NBF4, Bu4NPF6 

Cosolvent HFIP: 0, 1 

```  

where NHPI = N-Hydroxyphthalimide; TCNHPI = Tetrachloro-N-hydroxyphthalimide; QD = Quinuclidine; DABCO = 1,4-

Diazabicyclo[2.2.2]octane; TEMPO = 2,2,6,6-Tetramethylpiperidine 1-oxyl 

HFIP - Hexafluoro-2-propanol 

 

You are working with an experimental chemist. First, start with five initial random experiments, then based on your understanding 

of these experiments, propose five new experimental conditions to try. In the next conversation, the chemist will run the 

experiments and report back the yields. Based on the results from the initial ten experiments, you will propose five more. In total, 

there are ten iterations. The goal is to behave like an expert chemist and make proposals not only based on yield observations 

but also on your understanding of each synthesis parameter and this specific type of reaction. 

Now, here is the first 4 randomly chosen initial experiments, the reaction yield is a number between 0 to 100: 

 

Iteration Substrate Concentration Mediator eq. Mediator type Electrolyte type Co solvent HFIP yield 

0 0.1 0.5 TCNHPI Bu4NPF6 0 6 

0 0.075 0.5 QD Et4NBF4 1 5 

0 0.075 0.5 QD LiOTf 1 5 

0 0.075 0.5 NHPI LiClO4 1 8 

 

Please follow strictly to below template to answer your questions, make sure you include the {} and comma in the template. 

""" 

Previous Reactions and Yields: 

Iteration 0 Reaction 1: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP} Reaction Yield: {Yield}  

Iteration 0 Reaction 2: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP} Reaction Yield: {Yield}  

Iteration 0 Reaction 3: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP} Reaction Yield: {Yield}  

...... 

Iteration m Reaction n: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP, reaction yield}  

  

Your Observation:{include your observations such as any trends or patterns you have identified, and summarize how you 

rationale the selection of conditions for the subsequent experiments} 

Suggested Condition 1: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP}  

Reasoning 1: {Your reasoning for suggested condition 1} 

Suggested Condition 2: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP}  

Reasoning 2: {Your reasoning for suggested condition 2} 

Suggested Condition 3: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP} 

Reasoning 3: {Your reasoning for suggested condition 3} 

Suggested Condition 4: {Concentration, Mediator eq, Mediator Type, Electrolyte Type, Cosolvent HFIP}  

Reasoning 4: {Your reasoning for suggested condition 4} 

""" 
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Figure S51. A representative assistant answer based on the user's prompt. The LLM is instructed 
to first summarize the previously observed yields for various conditions to verify its understanding 

of the prompt and its ability to interpret the data. Following this, the assistant should provide a 
narrative observation to analyze the trend in yields and, based on this analysis, suggest additional 

conditions aimed at enhancing the yield. Each suggestion should be accompanied by reasoning. 
  

Assistant:  

Previous Reactions and Yields: 

Iteration 0 Reaction 1: {0.075, 0.5, QD, Et4NBF4, 1} Reaction Yield: {5} 

Iteration 0 Reaction 2: {0.075, 0.5, NHPI, LiClO4, 1} Reaction Yield: {8} 

Iteration 0 Reaction 3: {0.1, 0.5, TCNHPI, Bu4NPF6, 0} Reaction Yield: {6} 

Iteration 0 Reaction 4: {0.05, 0.5, TEMPO, LiClO4, 0} Reaction Yield: {0} 

 

Your Observation: From the initial data, it appears that the yields are generally low across all conditions tested, suggesting room 

for optimization in multiple parameters. Notably, the use of HFIP as a cosolvent correlates with some increase in yield 

(experiments 1 and 2). TEMPO, in the absence of HFIP, led to a yield of zero, indicating it might require specific conditions to be 

effective or could be a less suitable mediator for this reaction. The electrolyte LiClO4 showed mixed results, which could merit 

further exploration with different mediators or substrate concentrations. 

 

Suggested Condition 1: {0.1, 1, NHPI, LiClO4, 1} 

Reasoning 1: Increasing the concentration of the substrate to 0.1 M and mediator equivalence to 1 with NHPI, which had some 

success in earlier trials, could enhance reaction efficiency. HFIP is included as it showed potential in boosting yields.  

Suggested Condition 2: {0.05, 0.25, DABCO, Bu4NPF6, 0} 

Reasoning 2: Reducing mediator equivalence to 0.25 and using DABCO, a different mediator type, might provide new insights 

into mediator performance. The lower substrate concentration and the absence of HFIP are intended to assess DABCO's intrinsic  

activity. 

Suggested Condition 3: {0.125, 0.5, TEMPO, Et4NBF4, 1} 

Reasoning 3: Increasing substrate concentration to the maximum and reintroducing TEMPO with HFIP might improve TEMPO's 

activity, which was ineffective in a prior test. Et4NBF4 is selected based on its prior use but paired differently. 

Suggested Condition 4: {0.1, 0.75, TCNHPI, LiOTf, 1} 

Reasoning 4: Increasing mediator equivalence to 0.75 and changing the electrolyte to LiOTf could provide a different ionic 

environment for TCNHPI, potentially enhancing its effectiveness. The presence of HFIP aims to stabilize the reaction mixture.  
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Figure S52. A parser written by the LLM that can extract the suggestions it made into formulated 
conditions and generate the user prompt for the next iteration of the conversation. By doing so, the 

human user will only need to provide the observed yield for each condition, and the prompt will be 
automatically generated and sent to the LLM for the next round of suggestions. 

import re 

import pandas as pd 

import os 

 

def process_input_string(input_string): 

    # Extract the iteration number 

    iteration_number = int(re.findall(r'Iteration (\d+)', input_string)[-1]) + 1 

    # Extract the observation 

    observation = re.findall(r'Your Observation: (.*)', input_string, re.DOTALL)[0].strip() 

    # Extract the suggested conditions and reasonings 

    conditions = re.findall(r'Suggested Condition \d+: {(.*?)}', input_string) 

    reasonings = re.findall(r'Reasoning \d+: (.*)', input_string) 

    # Create a list to store the data 

    data = [] 

    # Iterate over the conditions and reasonings 

    for condition, reasoning in zip(conditions, reasonings): 

        values = [iteration_number, observation] + condition.split(', ') + [reasoning] 

        data.append(values) 

    # Create a DataFrame 

    columns = ['Iteration', 'Observation', 'Substrate Concentration', 'Mediator eq.', 

'Mediator type', 'Electrolyte type', 'Co solvent HFIP', 'Reasoning'] 

    df = pd.DataFrame(data, columns=columns) 

    # Save the DataFrame to an Excel file 

    output_file = 'output.xlsx' 

    df.to_excel(output_file, index=False) 

    # Open the Excel file 

    os.startfile(output_file) 

    # Generate the text 

    text = f"Here is the yield for your iteration {iteration_number}\n\n" 

    for i, condition in enumerate(conditions, start=1): 

        text += f"Iteration {iteration_number} Reaction {i}: {{{condition}}} Reaction Yield: 

{{X}}\n\n" 

    text +=f"Please suggest {i} new reaction using the provided template. " 

    text += """Make sure to include all given reactions in "Previous Reactions and Yields" 

and make your reasoning as detailed as possible. Please do not suggest the reaction condition 

that has been completed before. Below is the choice of each parameter.  

 

``` 

Substrate Concentration (M): 0.025, 0.05, 0.075, 0.1, 0.125 

 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

 

Electrolyte type: LiClO4, LiOTf , Bu4NClO4, Et4NBF4, Bu4NPF6 

 

Cosolvent HFIP: 0, 1 

```  

    """ 

    return text 
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Figure S53. A representative user prompt generated by the parser and sent to the LLM to request 

suggestions for the next round, accompanied by the corresponding answer from the LLM. The 
complete history of all conversations for all experiments in this study is provided in Spreadsheet 

SF4. EChem Reaction Optimization Dataset in the Supporting Information. 

User: Here is the yield for your iteration 1 

Iteration 1 Reaction 1: {0.1, 1, NHPI, LiClO4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 2: {0.05, 0.25, DABCO, Bu4NPF6, 0} Reaction Yield: {0} 

Iteration 1 Reaction 3: {0.125, 0.5, TEMPO, Et4NBF4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 4: {0.1, 0.75, TCNHPI, LiOTf, 1} Reaction Yield: {17} 

Please suggest 4 new reactions using the provided template.  

Make sure to include all given reactions in "Previous Reactions and Yields" and make your reasoning as detailed as possible. 

Please do not suggest the reaction condition that has been completed before. Below is the choice of each parameter.  

``` 

Substrate Concentration (M): 0.025, 0.05, 0.075, 0.1, 0.125 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

Electrolyte type: LiClO4, LiOTf , Bu4NClO4, Et4NBF4, Bu4NPF6 

Cosolvent HFIP: 0, 1 

``` 

 
Assistant: Previous Reactions and Yields: 

Iteration 0 Reaction 1: {0.075, 0.5, QD, Et4NBF4, 1} Reaction Yield: {5} 

Iteration 0 Reaction 2: {0.075, 0.5, NHPI, LiClO4, 1} Reaction Yield: {8} 

Iteration 0 Reaction 3: {0.1, 0.5, TCNHPI, Bu4NPF6, 0} Reaction Yield: {6} 

Iteration 0 Reaction 4: {0.05, 0.5, TEMPO, LiClO4, 0} Reaction Yield: {0} 

Iteration 1 Reaction 1: {0.1, 1, NHPI, LiClO4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 2: {0.05, 0.25, DABCO, Bu4NPF6, 0} Reaction Yield: {0} 

Iteration 1 Reaction 3: {0.125, 0.5, TEMPO, Et4NBF4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 4: {0.1, 0.75, TCNHPI, LiOTf, 1} Reaction Yield: {17} 

 

Your Observation: The highest yield obtained so far is 17% with TCNHPI, suggesting that this mediator might have promising 

potential under the right conditions. Most other setups resulted in zero yield, indicating either incompatible mediator -electrolyte 

combinations or issues with the parameters like concentration or mediator equivalence. It’s noteworthy that the only setups 

yielding results involved either NHPI or TCNHPI. This could imply specific mediator and electrolyte interactions that are beneficial, 

or the need for optimal mediator equivalence and substrate concentrations. 

 

Suggested Condition 1: {0.075, 1, TCNHPI, Bu4NPF6, 1} 

Reasoning 1: Doubling down on the combination of TCNHPI with another high-performance electrolyte, Bu4NPF6, and using 

HFIP which may provide a better medium for the reaction. Higher mediator equivalence and consistent substrate concentration 

from previous effective experiments might enhance yield. 

 

Suggested Condition 2: {0.125, 0.75, NHPI, LiOTf, 0} 

Reasoning 2: NHPI previously showed some activity; increasing the substrate concentration to the maximum might boost its 

performance. Using LiOTf as the electrolyte could provide a different ionic influence, and adjusting mediator equivalence to 0.75 

might strike a balance between reactivity and stability. 

 

Suggested Condition 3: {0.025, 0.5, QD, Et4NBF4, 1} 

Reasoning 3: Lowering the substrate concentration could potentially increase the relative impact of the mediator, and using QD 

in the presence of HFIP with a previously used effective electrolyte might provide insights into the optimal operating range for 

QD. 

 

Suggested Condition 4: {0.05, 1, DABCO, LiClO4, 1} 

Reasoning 4: Exploring the upper limit of mediator equivalence for DABCO, which had not been tested at higher equivalence 

levels. LiClO4 was selected due to previous modest success with NHPI, and including HFIP might stabilize or facilitate the reaction 

process, potentially uncovering hidden synergies. 
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Figure S54. A representative user prompt generated by the parser and sent to the LLM to request 
suggestions for the next round, accompanied by the corresponding answer from the LLM.  

  

User: Here is the yield for your iteration 2 

Iteration 2 Reaction 1: {0.075, 1, TCNHPI, Bu4NPF6, 1} Reaction Yield: {21} 

Iteration 2 Reaction 2: {0.125, 0.75, NHPI, LiOTf, 0} Reaction Yield: {5} 

Iteration 2 Reaction 3: {0.025, 0.5, QD, Et4NBF4, 1} Reaction Yield: {5} 

Iteration 2 Reaction 4: {0.05, 1, DABCO, LiClO4, 1} Reaction Yield: {0} 

Please suggest 4 new reaction using the provided template.  

Make sure to include all given reactions in "Previous Reactions and Yields" and make your reasoning as detailed as possible. 

Please do not suggest the reaction condition that has been completed before. Below are the choice of each parameter.  

``` 

Substrate Concentration (M): 0.025, 0.05, 0.075, 0.1, 0.125 

Mediator eq.: 0, 0.25, 0.5, 0.75, 1 

Mediator type: NHPI, TCNHPI, QD, DABCO, TEMPO 

Electrolyte type: LiClO4, LiOTf , Bu4NClO4, Et4NBF4, Bu4NPF6 

Cosolvent HFIP: 0, 1 

``` 

 
Assistant: Previous Reactions and Yields: 

Iteration 0 Reaction 1: {0.075, 0.5, QD, Et4NBF4, 1} Reaction Yield: {5} 

Iteration 0 Reaction 2: {0.075, 0.5, NHPI, LiClO4, 1} Reaction Yield: {8} 

Iteration 0 Reaction 3: {0.1, 0.5, TCNHPI, Bu4NPF6, 0} Reaction Yield: {6} 

Iteration 0 Reaction 4: {0.05, 0.5, TEMPO, LiClO4, 0} Reaction Yield: {0} 

Iteration 1 Reaction 1: {0.1, 1, NHPI, LiClO4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 2: {0.05, 0.25, DABCO, Bu4NPF6, 0} Reaction Yield: {0} 

Iteration 1 Reaction 3: {0.125, 0.5, TEMPO, Et4NBF4, 1} Reaction Yield: {0} 

Iteration 1 Reaction 4: {0.1, 0.75, TCNHPI, LiOTf, 1} Reaction Yield: {17} 

Iteration 2 Reaction 1: {0.075, 1, TCNHPI, Bu4NPF6, 1} Reaction Yield: {21} 

Iteration 2 Reaction 2: {0.125, 0.75, NHPI, LiOTf, 0} Reaction Yield: {5} 

Iteration 2 Reaction 3: {0.025, 0.5, QD, Et4NBF4, 1} Reaction Yield: {5} 

Iteration 2 Reaction 4: {0.05, 1, DABCO, LiClO4, 1} Reaction Yield: {0} 

 

Your Observation: TCNHPI continues to show promising results, especially with higher mediator equivalence and the use of HFIP. 

There seems to be a trend where higher substrate concentrations or higher mediator equivalents generally result in increased 

yields, particularly when combined with certain electrolytes like Bu4NPF6. Notably, experiments with HFIP tend to yield better 

results, suggesting its significant role in stabilizing or activating the reaction environment. 

 

Suggested Condition 1: {0.1, 0.75, NHPI, Bu4NClO4, 1} 

Reasoning 1: Building on the modest success of NHPI at high substrate concentration, pairing it with Bu4NClO4 might enhance 

ionic interactions, potentially improving the reaction's efficiency. Using HFIP could further assist in stabilizing the active species 

or improving solubility. 

 

Suggested Condition 2: {0.125, 1, TCNHPI, LiClO4, 1} 

Reasoning 2: Maximizing both the substrate concentration and mediator equivalence for TCNHPI, which has shown the highest 

yields. LiClO4 is revisited with HFIP to explore whether the ionic environment could further enhance yields under these maximized 

conditions. 

 

Suggested Condition 3: {0.075, 0.5, TEMPO, Bu4NPF6, 1} 

Reasoning 3: Re-testing TEMPO with different conditions, given the zero yield previously. A lower mediator equivalence and the 

inclusion of HFIP, combined with a well-performing electrolyte (Bu4NPF6), might alter the dynamics favorably. 

 

Suggested Condition 4: {0.05, 0.25, QD, LiOTf, 1} 

Reasoning 4: Lower substrate and mediator levels might optimize QD's performance in a different electrolyte environment. LiOTf 

could provide an interesting contrast to Et4NBF4, and including HFIP might enhance the mediator’s activity or stability in the 

reaction system. 
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import pandas as pd 

import numpy as np 

from itertools import product 

from skopt import Optimizer 

from skopt.space import Integer, Categorical 

 

# Generate the entire search space and save to CSV 

def generate_search_space(): 

    substrate_concentration = [0.025, 0.05, 0.075, 0.1, 0.125] 

    mediator_eq = [0, 0.25, 0.5, 0.75, 1] 

    mediator_types = ['NHPI', 'TCNHPI', 'QD', 'DABCO', 'TEMPO'] 

    electrolyte_types = ['LiClO4', 'LiOTf', 'Bu4NClO4', 'Et4NBF4', 'Bu4NPF6'] 

    co_solvent = [0, 1] 

 

    all_combinations = list(product(substrate_concentration, mediator_eq, mediator_types, 

electrolyte_types, co_solvent)) 

    df = pd.DataFrame(all_combinations, columns=['Substrate Concentration', 'Mediator eq', 

'Mediator Type', 'Electrolyte Type', 'Co-solvent HFIP']) 

    df.to_csv('echem_search_space.csv', index=False) 

    initialize_experiments(df) 

    print('echem_search_space.csv generated') 

 

# Initialize the experiment csv 

def initialize_experiments(df): 

    df['Yield'] = 'PENDING' 

    df['Priority'] = 0 

    # Randomly select 3/4/5 conditions to start 

    initial_indices = np.random.choice(df.index, size=3, replace=False) 

    df.loc[initial_indices, 'Priority'] = 1 

    df.sort_values('Priority', ascending=False, inplace=True) 

    df.to_csv('echem_reaction_opt_round0.csv', index=False) 

 

# Function to update yield for multiple experiments 

def update_yield(csv_file, row_numbers, yield_values): 

    df = pd.read_csv(csv_file) 

    for row_num, yield_val in zip(row_numbers, yield_values): 

        if df.at[row_num, 'Priority'] == 1: 

            df.at[row_num, 'Yield'] = yield_val 

    df.to_csv(csv_file, index=False) 

 

# Function for reaction optimization 

def reaction_optimization(csv_file): 

    df = pd.read_csv(csv_file) 

    if df[df['Priority'] == 1]['Yield'].eq('PENDING').any(): 

        raise ValueError("Some experiments with Priority 1 have not completed yet.") 

    df.loc[df['Priority'] == 1, 'Priority'] = -1 

 

    # Setup the optimizer 

    dimensions = [Integer(1, 5), Integer(0, 4), Categorical(['NHPI', 'TCNHPI', 'QD', 'DABCO', 

'TEMPO']), 

                  Categorical(['LiClO4', 'LiOTf', 'Bu4NClO4', 'Et4NBF4', 'Bu4NPF6']), 

Integer(0, 1)] 

    optimizer = Optimizer(dimensions, base_estimator="GP", acq_func="EI") 

 

    # Encode completed experiments 

    completed = df[df['Priority'] == -1] 

    for _, row in completed.iterrows(): 

        encoded = [int(row['Substrate Concentration']/0.025), int(row['Mediator eq']/0.25), 

                   row['Mediator Type'], row['Electrolyte Type'], row['Co-solvent HFIP']] 

        optimizer.tell(encoded, -float(row['Yield']))  # negative yield because we minimize 

in optimization 

 

    # Get suggestions 
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Figure S55. LLM-generated Python code designed for function calling to assist in reaction 
optimization. This code uses skopt as an external machine learning tool to suggest reaction 

conditions based on user input and prior experimental data. This helper function can be integrated 
into the LLM as an external tool using detailed methods reported in previous literature.5 Briefly, 

the helper function’s name, a description of each paragraph, and its return content are provided. 
The LLM is informed of the function's existence and its potential as a tool. Based on the user 
prompt, the LLM decides whether to use this tool, resulting in the extraction of tool input, execution 

of code, and return of results. Finally, the LLM uses the tool's results to formulate its response. 
Further details and examples are available at platform.openai.com/docs/guides/function-calling, 

https://docs.llama-api.com/essentials/function and docs.anthropic.com/en/docs/build-with-
claude/tool-use. 

    for _, row in completed.iterrows(): 

        encoded = [int(row['Substrate Concentration']/0.025), int(row['Mediator eq']/0.25), 

                   row['Mediator Type'], row['Electrolyte Type'], row['Co-solvent HFIP']] 

        optimizer.tell(encoded, -float(row['Yield']))  # negative yield because we minimize 

in optimization 

 

    # Get suggestions 

    suggested_points = optimizer.ask(n_points=3) 

    for point in suggested_points: 

        decoded = [point[0] * 0.025, point[1] * 0.25, point[2], point[3], point[4]] 

        existing = df[(df['Substrate Concentration'] == decoded[0]) & (df['Mediator eq'] == 

decoded[1]) & 

                      (df['Mediator Type'] == decoded[2]) & (df['Electrolyte Type'] == 

decoded[3]) & 

                      (df['Co-solvent HFIP'] == decoded[4])] 

        if existing.empty or existing.iloc[0]['Priority'] == 0: 

            row_idx = existing.index 

            if len(row_idx) > 0: 

                df.at[row_idx[0], 'Priority'] = 1 

                df.at[row_idx[0], 'Yield'] = 'PENDING' 

                print("Added") 

 

 

    # Prepare new CSV for next round 

 

    new_round_number = int(csv_file.split('round')[1].split('.')[0]) + 1 

    new_csv_file = f'echem_reaction_opt_round{new_round_number}.csv' 

    df.sort_values('Priority', ascending=False, inplace=True) 

    df.to_csv(new_csv_file, index=False) 

    return new_csv_file 
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Figure S56. Example of JSON schema for function calling.  

{ 

    "name": "generate_search_space", 

    "description": "Generate the search space for reaction optimization and save it to a CSV 

file.", 

    "parameters": { 

        "type": "object", 

        "properties": {} 

    }, 

    "required": [] 

} 

 

{ 

    "name": "update_yield", 

    "description": "Update the yields for specific reactions in the given CSV file.", 

    "parameters": { 

        "type": "object", 

        "properties": { 

            "csv_file": { 

                "type": "string", 

                "description": "The path to the CSV file where yields are recorded." 

            }, 

            "row_numbers": { 

                "type": "array", 

                "items": { "type": "integer" }, 

                "description": "The row numbers of the experiments to update." 

            }, 

            "yield_values": { 

                "type": "array", 

                "items": { "type": "number" }, 

                "description": "The yield values to update in the corresponding rows." 

            } 

        }, 

        "required": ["csv_file", "row_numbers", "yield_values"] 

    } 

} 

 

{ 

    "name": "reaction_optimization", 

    "description": "Perform reaction optimization using skopt and suggest new reaction 

conditions.", 

    "parameters": { 

        "type": "object", 

        "properties": { 

            "csv_file": { 

                "type": "string", 

                "description": "The path to the CSV file containing reaction data for 

optimization." 

            } 

        }, 

        "required": ["csv_file"] 

    } 

} 
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Figure S57. LLM-generated Python code for a helper function to use edbo22,31 as the ML tool to 
make suggestions based on user input.  

from edbo.plus.optimizer_botorch import EDBOplus 

import pandas as pd 

 

def initialize_experiment(reaction_components, filename, batch_size=4): 

    # Generate the reaction scope and save it to a CSV file 

    EDBOplus().generate_reaction_scope( 

        components=reaction_components,  # Components used to generate the scope 

        filename=filename,              # Filename for saving the generated scope 

        check_overwrite=False           # Avoid overwriting existing files 

    ) 

    # Run the optimizer to suggest initial experiments 

    EDBOplus().run( 

        filename=filename,               # Use the generated scope from the filename 

        objectives=['yield'],            # Set 'yield' as the objective to optimize 

        objective_mode=['max'],          # Maximize the objective (yield) 

        batch=batch_size,                # Set the number of experiments per batch 

        columns_features='all',          # Use all columns as features 

        init_sampling_method='cvtsampling'  # Initialization method for sampling 

    ) 

    # Load and display the first few experiments 

    df_init = pd.read_csv(filename) 

return df_init.head(batch_size) 

 

def update_experiments_with_yield(filename, conditions, observed_yields, batch_size=4): 

    # Load the existing reaction scope 

    df = pd.read_csv(filename) 

    # Update the DataFrame with observed yields 

    for condition, yield_val in zip(conditions, observed_yields): 

        mask = ( 

            (df['substrate_concentration'] == condition[0]) & 

            (df['mediator_eq'] == condition[1]) & 

            (df['mediator_type'] == condition[2]) & 

            (df['electrolyte_type'] == condition[3]) & 

            (df['co_solvent_HFIP'] == condition[4]) 

        ) 

        df.loc[mask, 'yield'] = yield_val  # Update the yield for the experiment 

        df.loc[mask, 'priority'] = -1      # Mark as completed 

    # Save the updated scope 

    updated_filename = 'updated_' + filename 

    df.to_csv(updated_filename, index=False) 

    # Run the optimizer using the updated scope to suggest the next experiments 

    EDBOplus().run( 

        filename=updated_filename,          # Use the updated scope 

        objectives=['yield'],               # Objective to be optimized 

        objective_mode=['max'],              # Objective mode to maximize yield 

        batch=batch_size,                    # Number of experiments to suggest 

        columns_features='all',              # Features to include in the model 

        init_sampling_method='cvtsampling'   # Sampling method for initialization 

    ) 

    # Load and display the suggested next experiments 

    df_next = pd.read_csv(updated_filename) 

    return df_next.head(batch_size) 
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Section S7. NMR Data 

 
Figure S58. 1H NMR spectrum of 1b (500 MHz, CDCl3).  

 

 
Figure S59. 13C NMR spectrum of 1b (126 MHz, CDCl3).   
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Figure S60. 1H NMR spectrum of 2b (500 MHz, CDCl3).  
 
 

 
Figure S61. 13C NMR spectrum of 2b (126 MHz, CDCl3).  
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Figure S62. 1H NMR spectrum of 3b (500 MHz, CDCl3).  

 
 

 
Figure S63. 13C NMR spectrum of 3b (126 MHz, CDCl3).  
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Figure S64. 1H NMR spectrum of 4b (500 MHz, CDCl3).  

 
 

 
Figure S65. 13C NMR spectrum of 4b (126 MHz, CDCl3).  
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Figure S66. 1H NMR spectrum of 5b (500 MHz, CDCl3).  

 
 

 
Figure S67. 13C NMR spectrum of 5b (126 MHz, CDCl3).  
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Figure S68. 1H NMR spectrum of 6b (500 MHz, CDCl3).  

 
 

 
Figure S69. 13C NMR spectrum of 6b (126 MHz, CDCl3).  
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Figure S70. 1H NMR spectrum of 7b (500 MHz, CDCl3).  

 
 

 
Figure S71. 13C NMR spectrum of 7b (126 MHz, CDCl3).  
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Figure S72. 1H NMR spectrum of 8b (500 MHz, CDCl3).  

 
 

 
Figure S73. 13C NMR spectrum of 8b (126 MHz, CDCl3).  
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