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Abstract

Reticular chemistry is the science of connecting molecular building 
units into crystalline extended structures such as metal–organic 
frameworks and covalent organic frameworks. Large language models 
(LLMs), a type of generative artificial intelligence system, can augment 
laboratory research in reticular chemistry by helping scientists to extract 
knowledge from literature, design materials and collect and interpret 
experimental data — ultimately accelerating scientific discovery.  
In this Perspective, we explore the concepts and methods used to apply 
LLMs in research, including prompt engineering, knowledge and tool 
augmentation and fine-tuning. We discuss how ‘chemistry-aware’ models 
can be tailored to specific tasks and integrated into existing practices of 
reticular chemistry, transforming the traditional ‘make, characterize, 
use’ protocol driven by empirical knowledge into a discovery cycle based 
on finding synthesis–structure–property–performance relationships. 
Furthermore, we explore how modular LLM agents can be integrated 
into multi-agent laboratory systems, such as self-driving robotic 
laboratories, to streamline labour-intensive tasks and collaborate with 
chemists and how LLMs can lower the barriers to applying generative 
artificial intelligence and data-driven workflows to such challenging 
research questions as crystallization. This contribution equips both 
computational and experimental chemists with the insights necessary 
to harness LLMs for materials discovery in reticular chemistry and, more 
broadly, materials science.
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Prompt engineering
Prompt engineering refers to optimizing the user prompt (input 
instructions) given to an LLM to consistently produce high-quality 
responses aligned with the user’s goals. This approach is widely used35–37 
and particularly appealing to chemists because it enables ‘teaching’ 
LLMs using natural language13,15,16,32,38,39, which lowers the barrier and 
the need for extensive coding expertise. In other words, the text-based 
instructions themselves can serve as a form of programming the LLM. 
For instance, a prompt such as ‘Please summarize the synthesis con-
ditions from the paragraph below into a table’ can guide the LLM to 
identify chemical entities within the provided (con)text and produce 
structured output, such as a table in this case, without requiring the user 
to implement code to define chemical terms explicitly (Fig. 2c, top). 
Moreover, the prompt can be modified in natural language to satisfy 
the needs of different domains for various synthesis parameters15.

An important consideration with LLMs is that their primary aim is 
to generate natural language, which does not necessarily guarantee the 
production of accurate information9,28,30. This can lead to instances in 
which an LLM produces convincing yet factually incorrect content, a 
phenomenon known as hallucination9,40. For instance, it can generate 
non-existent citations14, fabricated synthesis conditions15 or wrong 
chemical structures and properties41, all of which are undesirable 
outputs. In zero-shot prompting scenarios, in which the model has not 
been provided task-specific examples in the prompt, our experience 
indicates that drafting an effective prompt for chemistry-related tasks 
involves three key principles15.

Minimize hallucinations. Include a sentence such as ‘Please use the 
provided text to answer the question. If you do not know, answer ‘N/A’ 
to ensure the LLM bases its response on the given context rather than 
generating speculative answers with wrong information.

Provide detailed instructions. Reduce ambiguity by specifying precise 
parameters, such as ‘metal–linker ratio, reaction temperature, reaction 
time’, rather than vague terms such as ‘different reaction conditions’. 
This clarity helps the LLM to interpret the prompt consistently. Addi-
tionally, defining the model’s role, such as ‘You are an expert in organic 
synthesis’, can further align its output with domain-specific tasks.

Request structured output. Specify the desired output format in the 
prompt to guide the LLM’s response structure to ensure more consist-
ent results and facilitate easier post-processing. In addition, an output 
template can be provided to make sure the LLM can generate answers 
aligning with human preference.

As demonstrated in the next section and through the prompt 
templates provided in some of our group’s work15,38,42, the use of these 
principles when designing simple prompts leads to an improvement 
in the LLM’s performance towards the desired goal. It has also been 
observed that minor variations in wording, sentence order or even 
typos in the prompt do not substantially affect the outcome, provided 
that the three key principles are adhered to.

In few-shot learning scenarios — in which multiple input–output 
pairs are provided as examples — the appropriate use of examples can 
be very powerful in an LLM’s learning and generation of the desired 
response15. Examples are particularly useful for classification tasks, 
in which instructions alone may be insufficient. For instance, when 
prompting the model to recognize whether a given paragraph describes 
a synthesis, rather than defining the characteristics of a synthesis 
paragraph in the prompt, the user can provide several examples, both 

Introduction
Reticular chemistry, the science of linking molecular building units 
with strong bonds to make crystalline extended structures, offers a 
vast and versatile playground for material design and discovery1–4. The 
flexibility with which these building blocks can be modified has led to 
the synthesis and study of thousands of reticular compounds each 
year (Fig. 1), including metal–organic frameworks (MOFs), covalent 
organic frameworks (COFs), zeolitic imidazolate frameworks (ZIFs) 
and molecular weaving. Still, this progress has barely scratched the 
surface of this nearly infinite design space2,5. To accelerate discovery 
in this field, the limitations of the traditionally used trial-and-error 
approach, which relies heavily on domain-specific knowledge and 
lacks scalability of operations, must be overcome.

The appeal and promise of generative artificial intelligence (AI) 
systems have been growing over the past few years6–11. Among them, 
large language models (LLMs) have captured the attention of the 
chemistry and material community owing to their unique capabilities 
in natural language processing, chemical knowledge integration and 
tool utilization9,12,13. Such features have the potential of enabling, for 
instance, customizable extraction of chemical data from literature14,15 
and adaptable automation of synthesis on robotic platforms16, which 
may empower chemists to address societal problems faced today 
in climate change, clean energy, clean air, clean water and health 
more efficiently by streamlining routine laboratory tasks2. Yet, as 
a newly emerging field, the practice of identifying and configuring 
LLM agents for specific downstream tasks as well as optimizing their 
performance can be vexing for a chemist without prior experience or 
knowledge about how to ‘plug in’ LLMs to help improve their existing 
workflows.

This Perspective aims to address how LLMs can transform the 
practice of reticular chemistry and, more specifically, how they 
can improve understanding of the synthesis–structure–property–
performance relationships in this field and thereby accelerate the 
discovery of reticular materials. We begin by introducing a set 
of basic techniques for leveraging LLMs and then present their 
potential applications in the laboratory. Our goal is to inspire new 
methods of using LLMs and to break down any barriers to their 
adoption in reticular chemistry. Ultimately, we aim to provide 
concepts, opportunities, challenges and key insights from recent 
work for those ‘LLM-curious’ chemists — whether computational 
or experimental — who are eager to explore the potential of LLMs in  
their research.

Fundamentals of large language models
LLMs, exemplified by the GPT series17,18, Claude series, Gemini series19 
and LLaMA series20,21, are a type of AI system designed to recognize 
and generate human-like language patterns. These models are 
deep neural networks with billions of parameters, typically based 
on the transformer architecture22 (Fig. 2a). They are trained on a vast 
corpora of text data, enabling them to learn intricate linguistic pat-
terns, grammar, context and semantics9,20,23. Additionally, LLMs can 
be designed to be multimodal24,25 (Fig. 2b), meaning they can pro-
cess various types of data, in particular images and videos, through 
encoding26,27, expanding the range of problems to which they can be 
applied19,28,29. Several comprehensive reviews detailing the develop-
ment of LLMs have been published30–34. Here, we focus on methodolo-
gies that chemists can use to ‘teach’ or optimize the behaviour of a 
base LLM model (Fig. 2c–e and Table 1), aligning it with specific tasks 
in reticular chemistry.
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positive (such as sample synthesis paragraphs) and negative (such as 
characterization preparation, post-synthetic modification and other 
misleading examples), and indicate which should and should not be 
classified as a synthesis paragraph. The model is then given a new para-
graph to classify based on these examples (Fig. 2c, middle). A similar 
procedure of providing examples can be applied when extracting 
information from tables, where ambiguous symbols or terms should be 
included in the prompt alongside their correct counterparts for accu-
rate extraction. Further discussions on applying in-context learning 
can be found in the literature30,36,43,44.

To further enhance the reasoning capabilities of LLMs — enabling 
them to tackle logical problems, task planning and critical thinking —  
techniques such as chain-of-thought35,37,45, tree-of-thought46, text 
transformation graphs47, self-consistency48 and self-reflection49,50 
have been developed. For example, when generating code for a liq-
uid handler to prepare reaction mixtures, chain-of-thought can be  
used to break down complex tasks into sequential steps (for example, 
selecting reagents, determining volumes, setting pipette parameters 
and specifying well positions), facilitating more accurate execution 
(Fig. 2c, bottom). Self-consistency, which involves generating multiple 
answers and selecting the best one, can simulate code before actual 
experiments, whereas self-reflection, in which the output of the model 
is fed back into itself, helps to revise plans or correct errors. We note 
that the application of these techniques can vary depending on the spe-
cific task. It is important to recognize that any given LLM may require 
careful prompting and continuous experimentation to yield optimal 
outcomes. A practical approach is to start with a simple human-written 
prompt or an existing reported prompt, interact with the LLM, evaluate 
its responses and iteratively refine the prompt to include more detailed 
instructions, examples or advanced prompting methods mentioned 
earlier to optimize performance and enhance the utility of the model.

Augmentation
External data and toolkits can be integrated with LLMs to unlock more 
user-defined scientific tasks16,51–53. This approach is different from 
prompt engineering in that it allows LLMs to access external resources 
and interact more closely with the real world (Table 1). Broadly speaking, 
there are two main categories of augmentation, data augmentation and 
tool augmentation, which can be used together or independently to 
extend the capabilities of the LLM.

Data augmentation enhances the knowledge and contextual accu-
racy of LLM by integrating supplementary external information sources 
and is exemplified by retrieval-augmented generation (RAG)54,55, in 
which the LLM can access up-to-date reliable information and knowl-
edge and generate more accurate answers, by retrieving data from 
relevant web pages, scientific literature and databases. This can be 
done either by automated database lookups using semantic similarity 
matching or by using a web search module that pulls in real-time data 
to supplement the responses of LLM14,51. For instance, in naive RAG, 
when a chemist asks, ‘What are the synthesis conditions of MOF-321?’ —  
a compound not initially included in the LLM’s training — the model 
might provide hallucinations or no answer. A pre-written function15 can 
convert the text string of this question into a vector form and match it 
with the embeddings of sentences from a literature database, such as 
‘MOF-321 was prepared using …’ or ‘Herein, we report the synthesis of 
MOF-321 in …’ based on the highest similarity (usually cosine similar-
ity). These sentences are then combined with the original query and 
sent to the LLM, enabling it to use the provided reliable information to 
generate a precise answer. Similarly, when web search engine modules 

are used, the returned information is passed to the LLM to enhance 
its knowledge and provide more accurate responses. This approach 
offers two benefits: it reduces hallucinations and allows dynamic 
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Fig. 1 | Progress in reticular chemistry over the past three decades. 
The expanding field of metal–organic frameworks (MOFs), covalent organic 
frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), illustrated 
by number of publications and crystal structure depositions, has generated a 
volume of scientific literature that exceeds the limits of manual exploration, 
highlighting the need for tools such as large language models to automate 
processes such as summarization and data extraction. The search on publication 
data was restricted to the terms104 MOF, COF and ZIF in original articles and 
reviews collected on Web of Science, accessed as of 1 August 2024. The number 
of MOF structures refers to the cumulative yearly totals of crystal structures 
deposited in the Cambridge Structural Database (CSD) MOF subset105. The 
timeline highlights key milestones, including the synthesis of the first MOF106, 
COF107 and ZIF108, and developments in their designing principles1,109–114, synthesis 
methods115–118, databases2,105,119–123 and applications124–130.
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Fig. 2 | Overview of key concepts in leveraging large language models for 
reticular chemistry. Illustration of the transformer architecture, which can be 
an encoder-only model (auto-encoding), a decoder-only model (auto-regressive) 
or a combined encoder–decoder model (sequence-to-sequence) (part a). 
Multimodality refers to the ability of the models to process different types of 
data, such as text, images, audio and code, often through separate encoders. Note 
that such design does not guarantee accurate interpretation or precise numerical 
extraction from complex input data (part b). The commonly used techniques to 
modify the behaviour of large language models are prompt engineering (part c), 
which tailors model outputs for tasks such as summarizing synthesis parameters 

into structured formats (top), classifying paragraphs using in-context learning 
(middle) or implementing code for laboratory experiments using chain-of-
thought reasoning (bottom); external data and tool augmentation (part d), which 
expands large language model capabilities by accessing external databases for 
real-time knowledge or integrating with tools to perform tasks such as molecular 
property calculations; and fine-tuning (part e), which retrains models on domain-
specific data to specialize in downstream tasks. These techniques can be used 
individually or in combination, depending on the specific task in chemistry 
research. MOF, metal–organic framework; PZDC, 1H-pyrazole-3,5-dicarboxylate; 
SMILES, Simplified Molecular Input Line Entry System.
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access to frequently updated external data and knowledge. Note that 
in cases in which external data sources are unreliable or inaccurate, 
data augmentation may not necessarily become better than zero-shot 
or few-shot strategies. Additionally, one should be aware that external 
data retrieval can sizably increase the total number of tokens for each 
query, which as the interaction progresses may result in increased 
model runtime; higher costs, particularly when using API (Application 
Programming Interface) calls; and lower performance. For example, 
model performance tends to be highest when the relevant informa-
tion is located at the beginning or end of the input prompt, whereas it 
substantially declines when the model needs to retrieve details embed-
ded in the middle56. To ensure reliable performance while managing 
efficient resource consumption, careful optimization of augmenta-
tion workflows and thorough data curation (for example, removing 
irrelevant information and unusual symbols) are necessary.

In contrast to data augmentation, tool augmentation empowers 
LLMs to perform specialized tasks or calculations by integrating with 
external software or toolkits. Providing LLMs with external toolkits 
allows them not only to bypass their inherent weakness in numerical 
operations or predictions requiring more mathematical rigour, but 
also to interface with many programmes and become the meta-tool 
in many automated workflows16,42,51,52,57. There are various methods, 
with differing levels of coding complexity, to equip LLMs with tools 
or arrays of tools. Common methods include running generated code 
or making API calls. Typically, the LLM needs to be informed about 
the available tools, and coding is required to detect when the LLM 
decides to use a tool, execute it and return the results. For instance, 
when tasked with calculating the molecular weight of a compound 
or predicting its property, the LLM can generate a JSON ( JavaScript 
Object Notation) string containing the molecular formulas, which 
can then be input into an existing function (tool) in the code, with the 
function’s outcome fed back to the LLM to give the answer (Fig. 2d). 
Other examples of tools include converting molecule names to SMILES 
(Simplified Molecular Input Line Entry System) strings, converting 
units, calculating properties from structural files, processing literature 
images, preparing procedures, executing tasks on robotic platforms, 
checking inventory availability, capturing images with a microscope 
camera, analysing raw characterization data and so on. Compared 
with rule-based coding, the major advantage of tool augmentation lies 
in the LLM’s ability to understand what tools exist, when to use them 
and how to configure the inputs to correctly execute these models 
through reasoning16,42,51.

Fine-tuning
Fine-tuning an LLM involves retraining a base model on a specific data 
set (for example, scientific papers, synthesis condition data sets, chemi-
cal representations, structural information, material design principles 
and material properties) to tailor its performance to particular tasks or 
domains41,58–63. Unlike prompt engineering and augmentation, which 
do not alter the base model, fine-tuning adjusts the model’s weight 
parameters and results in a new instance of model (Fig. 2e). This process 
usually requires a high-quality, domain-specific data set to ensure that 
relevant information will be demonstrated to the LLM during train-
ing, and it statistically improves the LLM’s performance in generating 
accurate and contextually appropriate responses (Table 1). As a result, 
key advantages of fine-tuning over the previous two methods are that 
it incorporates more data and examples into the model than can be 
accommodated in a single prompt, and that it enables the model to 
learn from the data, rather than just accessing it.

Models that can be fine-tuned include LLaMA20,21, Mistral64, 
SciBERT65, BART66, T5 (ref. 67), GPT-3.5-turbo, GPT-4o-mini and Claude 
3.5, among others, and common fine-tuning methods include full 
fine-tuning, instruction tuning and parameter-efficient fine-tuning68,69. 
It should be noted that not all LLMs have open-sourced their weights; 
for models such as the GPT series and the Claude series, fine-tuning is 
only possible via company APIs. In fact, for beginners, we recommend 
starting with LLMs that can be fine-tuned with API support from com-
panies such as OpenAI, Anthropic, Amazon and Databricks, as using 
these models requires less coding expertise and offloads the compu-
tational resources to the service provider, simplifying the process to 
make it user-friendly.

Consider instruction tuning with API support as an example, 
which trains LLMs using examples that demonstrate the desired 
responses to queries. To address the observation that base LLMs 
might struggle with understanding SMILES70 strings or abbreviations 
of organic linkers, additional chemical representation data were incor-
porated into a model to help it learn better (Fig. 2e). In such a case, 
a data set of typically hundreds or thousands of pairs of examples 
that show the syntactically and semantically correct ‘translation’ 
from the original name to a specific representation can be developed 
to train the model on new knowledge41. This data set allows the model 
to ‘think’ in a new niche way and effectively perform the given task. 
By contrast, using a few-shot prompt with hundreds of examples in 
a single long prompt is usually ineffective, and RAG does not teach 
any patterns either.

The next step is to format these pairs in the data set into queries and 
expected answers and upload them via the API service. The subsequent 
fine-tuning process can take minutes to days, depending on the size of 
the data. An advantage of using API services is that there are no com-
putational or hardware requirements on the user’s end, as the service 
provider runs fine-tuning tasks on its end and charges for a cost. The 
user can evaluate the fine-tuned model through the provided API by 
checking its performance with a few organic linker names not included 
in the training data set. Once fine-tuning is complete, the model is made 
available via a dedicated API end point to be accessed. It is important to 
note that after fine-tuning, the resulting model is often best used for the 
specialized downstream tasks it was fine-tuned for, as it may lose some 
of its general capabilities. For each different task, a tailored data set 
often needs to be developed — highlighting a limitation of this method. 
In many situations, chemistry-related tasks (such as organic linker 
design, property prediction and synthesis planning) frequently require 

Table 1 | Comparison of strategies for optimizing the 
performance of large language models for chemists

Method Prompt 
engineering

Augmentation Fine-tuning

Implementation effort Low Medium High

Learning mechanism In-context 
learning

Tool utilization Change model 
weights and 
behaviours

External data 
requirement

None or low Required Extensive

Coding complexity None or low Medium to high Medium

Use cases Tasks on 
summarization, 
reasoning

Enhanced factual 
knowledge, tool 
integration

Domain-specific 
tasks, specialized 
models
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highly specific data and customization to ensure accurate performance, 
making fine-tuning desirable yet resource-intensive. This trade-off 
underscores the importance of carefully selecting the fine-tuning  
strategy to maximize utility while managing potential constraints.

Practical scenarios and workflows
After one knows how to develop domain-specific or task-specific LLMs, 
the next step is to apply these concepts in reticular chemistry research. 
The following case studies provide contextualized insight from our 
group’s experience as well as relevant work from other researchers in 
the field, spanning the spectrum of data mining, material design and 
optimization.

Data mining
Both experimental and computational chemists in reticular chemistry 
need to extract knowledge and insights from complex and diverse 
chemical texts, particularly to understand synthesis–structure–
property relationships2,71. Traditionally, curating data from scientific 

literature in this field (Fig. 3) requires intensive human annotation or 
coding expertise — including rule-based systems and machine-learning 
(ML) models — to extract information sparsely located within the text, 
such as synthesis protocols72,73, porosity74,75, topology74, decomposition 
temperature76,77 and water stability78,79. It is also common that workflows 
developed for one specific type of data are not generalizable to others.

LLMs offer a scalable way to accelerate this process by automating 
literature selection, semantic analysis, named entity recognition and 
post-processing steps (Fig. 3). Each step can be ‘programmed’ using 
natural language prompt engineering in various chemical vocabular-
ies, making this approach particularly user-friendly and accessible for 
reticular chemists15,71,80,81. In addition to using only prompt engineer-
ing, research over the past year has demonstrated that the fine-tuning 
strategy can be used to enhance an LLM’s performance accuracy in 
data mining tasks62,63.

To illustrate, consider the task of extracting MOF synthesis para
meters. To define the research scope (step 1), a list of synthesis conditions 
that lead to MOF crystallization is conceived, which includes variables 

Define research 
scope

Identify relevant 
papers

COF-99

MOF-300 MOF-301

Link compound 
and data

Check accuracy 
and completeness

Determine target 
materials

Select paragraph 
or plot

Extract chemical 
representations

Extract textual or 
graphical dataO

H

H

H

O O

O

C C

N N

C C
C

Al(OH)(PZDC)

MOF-303Al

1

2

3a

4a

3b

4b

5

6

Fig. 3 | Overview of key steps in data mining from scientific 
literature. Although steps such as defining data types to be extracted 
(step 1) and data extraction itself (steps 4a and 4b) are straightforward, 
selecting relevant papers to read (step 2) and identifying specific  
targets for analysis (steps 3a and 3b) are more complicated. The most  
challenging step (step 5) involves linking trivial names or labels of  
compounds with their synthesis conditions or characterization data  
found elsewhere in the paper. The final step is to verify the accuracy  
and completeness of the data extracted (step 6). The number of red  
bars at each step indicates the relative difficulty. COF, covalent  
organic framework; MOF, metal–organic framework; PZDC, 
1H-pyrazole-3,5-dicarboxylate.
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such as metal, linker, solvent, reaction time and temperature. The work-
flow begins with the selection of relevant papers using an LLM (step 2). 
The model is taught to recognize user-defined criteria (for example, 
‘MOF synthesis’, ‘experimental’, ‘not post-synthetic modification’, ‘not 
a review paper’) by examining the titles and abstracts in a library of 
papers. Once relevant papers have been identified, each paper is fed into 
the model to extract specific parameters needed by the user (steps 3  
and 4). The desired output format (for example, table, JSON diction-
ary, categorical labels) is specified in the prompt. Some examples of 
output synthesis parameters are shown in Fig. 4. In cases in which data 
may be in different sections of a paper (such as abbreviations, general 
procedures, reference codes), a holistic approach is necessary to syn-
chronize such information (step 5). Finally, the performance of the LLM 
is evaluated by comparing the output with the ground truth (step 6).

Notably, the flexibility of the query language allows this process 
to be easily adapted to diverse research needs and lowers the barrier 
for a reticular chemist with less experience in data science to conduct 
data mining; for example, by replacing ‘synthesis parameters’ with 
‘BET surface area’ (where BET refers to the Brunauer–Emmett–Teller 
method) in the prompt, the focus shifts from synthesis conditions to 
porosity data extraction.

Following data mining, the data must be processed. LLMs have also 
demonstrated their utility in this regard, streamlining labour-intensive 
processes so that human creativity can be used on other aspects. For 
instance, these models can convert abbreviations to conventional 
names or canonical SMILES codes, apply helper functions for calcu-
lating molarity or concentration, identify outliers in synthesis data, 
correct formatting errors or observe variable interactions and corre-
lations and so on15. Although tagging and associating different names 
or abbreviations within the same paper has been demonstrated15,80, 
standardizing data across papers remain challenging owing to the vari-
ous naming conventions used in the literature (for example, MOF-74 
versus CPO-27, H2PDC versus H2PyDC). We envision that such challenges 
might be alleviated by using LLMs with a stronger reasoning ability and 
a more comprehensive knowledge base specific to reticular materials 
and their building blocks. Alternatively, it might be possible in the 
future to assemble a group of LLMs (multi-agent LLM systems)42,80,82 

or leverage fine-tuned LLMs63 to streamline the standardization of raw 
data extracted from literature during the text-mining process.

In addition to using LLMs to extract synthesis information and 
properties from papers converted to plain text, multimodal LLMs 
can process images as input and classify plots or extract associated 
information29,83. For instance, an LLM with vision capability28 can be 
prompted to classify whether a thermogravimetric analysis graph 
or nitrogen sorption isotherm plot exists on a given page29 (Fig. 2b). 
The input in this case is a human-written customized prompt and an 
attached JPEG file of a full-page view from a paper. Once classification is 
completed, irrelevant pages can be eliminated, and the remaining ones 
can be further processed to extract information such as compound 
names in the figure, measurement parameters and reported property 
values. It should be acknowledged that although current models are 
able to recognize categorized plot types and read accompanying figure 
text boxes, annotations and captions29,83, extracting numerical values 
from data points in figures remains challenging (for example, reading 
water uptake at a given pressure), even with models that can classify 
and interpret these images. This difficulty arises because the model 
must discern the underlying scaling and axis values that the plotted 
data represent — where points lie on the axes, what those axes represent 
and how to translate a position on the plot into a number — rather than 
simply reading text and interpreting the contents.

Overall, the use of LLMs in data mining can greatly reduce human 
labour and enhance access to useful information. Our experience indi-
cates that a practical approach to developing this entire data mining 
process is to break it down into steps, start from what a human chemist 
would do in each step and ‘teach’ the LLM through prompts by treating 
it as an apprentice. Once a preliminary workflow has been established, 
it can be tested on a few papers to determine whether further instruc-
tions should be added to the prompt. After achieving the results in a 
consistent format on smaller data sets with low uncertainty over the 
goal, the workflow can be applied repetitively to publication corpuses.

Designing reticular frameworks
Over the past two decades, much attention has been paid to the rational 
design of reticular frameworks. Given the virtually infinite ways to 

Compound name

Metal

Linker

Solvent

Temperature and time

Observation

Al-fum

AICI3·6H2O 

Fumaric acid

H2O

100 °C, 6 h

White precipitate

CAU-10

AI2(SO4)3·18H20 

Isophthalic acid

DMF, H2O 

135 °C, 12 h

White precipitate

MOF-808

ZrOCI2·8H20 

Trimesic acid 

DMF

100 °C, 168 h

Octahedral 
colourless crystals

MOF-74

Zn(NO3)2·4H20 

2,5-Dihydroxyterephthalic acid

DMF

105 °C, 20 h

Yellow needle crystals

MOF-520

AI(NO3)3·9H20

Benzenetribenzoic acid

DMF

140 °C, 96 h

Block-shaped

ZIF-8

Zn(NO3)2·4H20

2-Methylimidazole

DMF

140 °C, 24 h

Polyhedral crystals
clear crystals

Fig. 4 | Examples of MOF synthesis parameters extracted from literature. 
Large language models have demonstrated their chemical knowledge and ability 
to recognize domain-specific name entities, enabling the summarization of 
diverse synthesis data into user-preferred formats. The obtained insights and 

knowledge in the large language model-mined data set can be later converted 
into actionable outcomes such as synthesis prediction or a knowledge graph. 
DMF, N,N-dimethylmethanamide; MOF, metal–organic framework; ZIF, zeolitic 
imidazolate framework.
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engineer frameworks at the atomic level, it remains a formidable chal-
lenge for humans to enumerate all structural possibilities and conduct 
experiments. LLMs, as a class of generative AI, are able to streamline 
this process: these models can be trained to generate a library of new 
building blocks or even entire structures, whose synthetic feasibility 

and properties can then be evaluated to narrow down the list to the 
most promising candidates, thereby accelerating materials discovery 
and synthesis.

Rather than building a generative AI model from scratch, which 
is resource-intensive, a reticular chemist can leverage pre-trained 
LLMs and fine-tune them on specific tasks. The key to this process is 
to obtain a suitable data set that encompasses new knowledge neces-
sary for fine-tuning. For instance, in 2023, we demonstrated the use 
of LLMs to mine data on MOF synthesis parameters15, which included 
hundreds of organic linkers. Building upon this, we explored whether 
this MOF linker data set could assist an LLM with learning how to edit 
organic linkers — such as functional group modifications, molecular 
length variations and heteroatom incorporation — and generate new 
and valid molecules41,84 (Fig. 5). In other words, for a given ‘mother’ 
linker (A0), we were interested in training an LLM to generate a series 
of variants (A1, A2, A3 and so on) in its output. This task required the 
LLM to understand the syntax of IUPAC names or SMILES strings and 
to ensure that generated molecular structures were chemically valid 
(that is, not violating bonding rules).

To this end, the data set included 3,943 example pairs (from A0 
to A1, A0 to A2, B0 to B1 and so on) that were used for instructional tun-
ing to guide the GPT-3.5-Turbo in learning the chemical information 
and rules embedded within it. The resulting fine-tuned model could 
generate SMILES strings or IUPAC names for edited MOF linkers with 
a higher accuracy (>84.8%) compared with the base model (10.2%), 
and this process was iterated many times, making multiple modifica-
tions, to create a library of MOF linkers. Promising candidates could 
be manually identified or computationally selected based on their 
commercial availability or synthetic feasibility determined by other 
ML models, leading to successful discovery of new water-harvesting 
MOFs41. More recently, the ability of LLMs to generate crystal struc-
ture CIFs (Crystallographic Information Files) through fine-tuning 
has been demonstrated61, suggesting further avenues for using LLMs 
as generative models in high-throughput computational screening.

LLMs also offer possible solutions to automating property predic-
tion, aiding the design of reticular materials. Although LLMs cannot 
be directly trained to predict properties owing to their limitations in 
numerical operations85, they can be augmented with predictive tools 
or computational packages to enhance mathematical rigour52. In this 
case, LLMs could help to select and interact with the proper compu-
tational package for reticular chemists. For example, we envision 
that in the future, calculation tools that determine accessible surface 
areas, such as Zeo++86–88, PoreBlazer89,90 and RASPA91, could potentially 
be integrated with LLMs in the workflow. The LLM could recognize 
input files in the relevant formats (for example, XYZ and CIF), reason 
about the necessary parameters, execute the tasks and interpret the 
outcomes. Although current LLMs may struggle with such complex 
integrations, advancements in this area could enable this capability. 
Ultimately, this process can be repeated for thousands of structures 
with LLM-in-the-loop. Moreover, tools such as trained ML models that 
assess water stability, thermal stability and CO2 uptake under spe-
cific conditions can also be introduced for function calling. In this 
setup, the LLM acts as a decision-maker, selecting the appropriate tool 
based on the user query and assigning the correct inputs to ensure 
that the tool executes accurately and analyses the results. In essence, 
a suite of individual LLMs could be developed to collect data sets, 
automate the generation of new materials and predict their properties, 
working sequentially to accelerate discovery in the field of reticular  
chemistry (Fig. 6).

Benzene-1,3-dicarboxylic acid
OC(=O)c1cccc(c1)C(O)=O

Pyridine-3,5-dicarboxylic acid
C1=C(C=NC=C1C(=O)O)C(=O)O

1H-pyrazole-3,5-dicarboxylic acid
OC(=O)c1[nH]nc(c1)C(O)=O

1H-pyrrole-2,4-dicarboxylic acid
OC(=O)c1[nH]cc(c1)C(O)=O

4-(4-Carboxyphenyl)benzoic acid
OC(=O)c1ccc(cc1)c2ccc(cc2)C(O)=O

4-[4-(4-Carboxyphenyl)phenyl]benzoic acid
OC(=O)c1ccc(cc1)c2ccc(cc2)

c3ccc(cc3)C(O)=O

5-(2-Carboxyethenyl)
benzene-1,3-dicarboxylic acid

OC(=O)C=Cc1cc(cc(c1)C(O)=O)C(O)=O

Benzene-1,3,5-tricarboxylic acid
OC(=O)c1cc(cc(c1)C(O)=O)C(O)=O

Terephthalic acid
OC(=O)c1ccc(cc1)C(O)=O

2-Hydroxyterephthalic acid
OC(=O)c1ccc(C(O)=O)c(O)c1

Fig. 5 | Generating molecular building block structures using fine-tuned large 
language models. The base large language models were trained on data sets of 
SMILES (Simplified Molecular Input Line Entry System) strings and IUPAC names 
of metal–organic framework linkers, respectively. The resulting fine-tuned 
models demonstrated an understanding of molecular structure and were capable 
of generating syntactically and chemically valid structures for new linker designs. 
Various molecular editing techniques, including functionalization, insertion 
and heteroatom introduction, were applied to generate new molecules based on 
given primitive molecules. Colour code: C, grey; O, red; N, blue. Hydrogen atoms 
are omitted for clarity.

http://www.nature.com/natrevmats


Nature Reviews Materials

Perspective

Synthesis exploration and automation
It is a dream and critical goal for every synthetic chemist working in 
reticular chemistry to obtain single crystals of the MOF, COF or ZIF 
they are studying. Not only does the attainment of crystals enable 
unambiguous structural characterization through X-ray and electron 
diffraction techniques but it is also a hallmark of synthesis quality, 
suggesting that the synthesis conditions are optimal. Nevertheless, 
crystallization persists as a challenge, requiring time and experience 
for chemists to master. Unfortunately, such empirical knowledge is 
often non-transferable between similar isoreticular compounds, as the 
optimal crystallization conditions for a given structure might shift with 
even the slightest alteration in the composition of a building block (such 
as from -H to -CH3). Furthermore, it is difficult to keep up with the grow-
ing number of published papers and synthesis procedures, so one can 
easily miss information that could save months or even years of work.

To help reticular chemists more effectively crystallize their target 
framework structures, we propose leveraging LLMs to enhance reticu-
lar material synthesis in three critical ways: by providing laboratory 
guidance, predicting synthesis outcomes and integrating automa-
tion for synthesis optimization. Although LLMs provide guidance on 
laboratory activities, plan syntheses and generate hypotheses, humans 
can verify these outputs experimentally and report back to the LLM 
to generate guidance on the next steps. This iterative process was 
shown to discover a series of isoreticular aluminium MOFs through 
multiple rounds of human–AI collaboration38. In the prompt, a memory 
storage section was introduced that asks the LLM to summarize the 
progress in the collaboration so far and add the latest activity. This 
historical record accumulates over time, documenting the success 
and failures over iterations and enabling the LLM to avoid repeating 
suggestions and dynamically adjust its guidance for the next steps.  

Prepare structural data

MOF1MOF2MOF3

.

.

.

MOFn

x1, x2, x3,     .     .     .    xn

Determine computational method

Descriptors

Machine-learning models

Features

[(Zn4O)(BDC)3]·2DMF

Experimental verification Identify desirable framework

Property measurementLaboratory synthesis

Property 1

Property 2

Virtual 
screening Simulations

Hypothetical Experimental

Reticular structures

Fig. 6 | The roles LLMs can take in a data-driven selection process for  
reticular frameworks. The process begins with the large language model  
(LLM)-assisted preparation of structural data, encompassing both hypothetical 
and experimental metal–organic framework (MOF), covalent organic framework 
or zeolitic imidazolate framework structures. Next, LLMs can help to determine 
critical descriptors and use predictive models to evaluate the performance of 
these framework structures. This is followed by using computational analysis as a 

tool to identify promising frameworks with simulations and algorithms (such as 
decision trees, support vector machines, neural networks and so on). The final 
step involves the experimental verification of the computationally selected 
MOFs, which can be accelerated with an LLM-driven laboratory, to confirm 
their predicted properties and applications. BDC, 1,4-benzenedicarboxylate; 
DMF, N,N-dimethylmethanamide.
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We have found that this type of human–AI collaboration, leverag-
ing the domain knowledge of the LLM in reticular chemistry, helps a 
human with no prior experience in material discovery to effectively 
navigate the literature search, organic linker synthesis, MOF screening 
process and measurement of properties. The LLM provides relevant 
suggestions, makes reasonable hypotheses based on observations 
and offers logical trials, akin to a helpful and experienced co-worker 
readily available in the laboratory.

Giving experimentalists the ability to predict whether given synthe-
sis parameters (linker, solvent, reaction time, temperature and so on)  
can form reticular frameworks would allow them to identify key 
parameters to tune and reduce the screening burden. The coding and 
programming capabilities of LLM agents are particularly interesting 
for this purpose, as these agents can create and use tools (such as ML 
programs or a bespoke data post-processing script) that aid such pre-
diction. GPT-3.5 was used in a 2023 study to mine synthesis conditions, 
which were then fed back to a more advanced GPT-4 to develop an ML 
model to predict single-crystal formation15. This binary classification 
model achieved more than 90% accuracy. Although tool-using features 
were not implemented at the time, this ML model can now be integrated 
with LLMs to select input synthesis parameters and return predic-
tion outcomes. As an alternative approach, LLMs themselves can be 
fine-tuned to predict the formation of inorganic compounds based on 
a given set of precursors62. It is envisioned that with an appropriate syn-
thesis data set in reticular chemistry (MOF, COF and ZIFs), a specialized 
LLM could predict synthesis outcomes. Collectively, these examples 

demonstrate that, through augmentation or fine-tuning, LLMs can 
assist in the prediction of synthesis conditions of reticular materials.

Manual experimentation in reticular chemistry is usually 
labour-intensive and can be slow owing to extensive screening of crys-
tallization conditions. To accelerate the synthesis step in this field, 
LLMs can be integrated with real laboratory environments, interfac-
ing seamlessly with human researchers, digital systems and physical 
hardware42,51,53,92–94. This integration can bridge the gap for those unfamil-
iar with digital tools or automation platforms, enhancing productivity 
by utilizing LLMs as meta-tools. Our group has developed task-specific 
LLMs15,38 that collaboratively interacted to discover and optimize the 
synthesis conditions of two novel MOFs and a new COF. Each LLM is 
modularized and orchestrated within a multi-agent system, in which 
distinct models handle specific tasks and they can talk to each other42. 
For instance, one LLM could handle planning and guidance, another 
could focus on data mining in reticular chemistry literature, while others 
could manage document search and data analysis, ML for suggesting 
and optimizing synthesis conditions, robotic platform operation for 
high-throughput synthesis based on ML-guided synthesis conditions 
and laboratory safety. This kind of integration edges closer to the vision 
of an AI-powered smart laboratory16,51,57 and gives a single human chem-
ist the productivity of an entire team — speeding up the optimization 
of crystallinity from the typical months to a few days. Many synthesis 
steps can be modularized and assigned to LLMs to unlock a complete 
experiment–computation–ML loop and streamline routine tasks.

Outlook
In this Perspective, we have explored how LLMs can improve reticular 
chemists’ understanding and practice of material design, synthesis 
and discovery, and we have outlined the conceptual and methodologi-
cal blueprint for applying LLMs in reticular chemistry research. This 
blueprint remains valid for many other fields in chemistry and materials 
science as well. Despite these advances, ongoing efforts are needed to 
enhance generative models further, making intelligent predictions in 
chemistry more routine and reliable.

First, there is room for improvement in the quality and breadth of 
data accessible to LLMs. Successful data points are frequently reported 
in the literature, but the inclusion of failures is equally important. 
Additionally, the reliance on simulated or computationally gener-
ated artificial data, although more accessible and less expensive than 
experimental data, may introduce uncertainties about the reliability 
of the output given by LLMs. Despite preliminary efforts having shown 
promise in using LLMs to extract structured data and subsequently 
use the mined data set to train a more specialized LLM with better 
performance41,63, structured and high-quality data sets are currently 
scarce in reticular chemistry because most of the data are distributed 
across different sources or repositories2, and making sure they are 
accurate is another challenge.

Moreover, the development of benchmark data sets for evaluating 
and comparing LLM performance is still in its early stages. Although 
platforms such as Chatbot Arena95 provide benchmarks for general 
applications, very few equivalent benchmarks exist for scientific tasks. 
Such benchmarks are crucial for systematically advancing the field, as 
they allow for various models to be assessed on specific tasks in reticu-
lar chemistry such as question-answering14,81,96, synthesis condition 
extraction82,97 and property prediction98. Additionally, as scientific 
literature is continually evolving, LLMs may not be able to judge the 
reliability of certain information without additional context or updates, 
particularly when newer studies present conclusions that conflict with 

Glossary

API
(Application Programming Interface). 
A set of rules and protocols that 
allow different software applications 
to communicate and share data or 
commands.

CIFs
(Crystallographic Information Files). 
A standardized text file format that 
records crystal structure data, including 
atomic coordinates and unit cell 
parameters, enabling consistent sharing 
of crystal structures.

JSON
(JavaScript Object Notation). 
A lightweight, text-based format used 
to structure, store and transfer data 
between systems in a human-readable 
manner.

LLM-in-the-loop
A workflow in which a large language 
model (LLM) continuously participates 
and provides input, just as a human 
expert would in a ‘human-in-the-loop’ 
scenario. The agent may propose 

actions, analyse data or suggest 
refinements, and then adapt its 
guidance based on feedback from 
experimental results, computational 
tools or human researchers.

Neural networks
A computational model inspired by 
the structure of the human brain, 
composed of layers of interconnected 
nodes (neurons) that process and learn 
patterns from data.

SMILES
(Simplified Molecular Input Line 
Entry System). A textual notation for 
representing chemical structures, 
allowing for easy storage, manipulation 
and computational handling of 
molecular information.

Tokens
The smallest units of text (such as 
words, parts of words or symbols) 
that a language model processes and 
generates during text analysis and 
processing.
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earlier reports. Thus, the development and curation of comprehensive 
data sets to train and evaluate LLMs — encompassing chemical struc-
tures, synthesis conditions, characterization results and properties 
such as porosity, gas uptake and stability — demand concerted efforts 
from the scientific community.

The seamless integration of LLMs within existing laboratory experi-
mentation infrastructure and computational tools presents both chal-
lenges and opportunities. Although LLMs are adept at making reasoned 
decisions that surpass rule-based systems and can utilize various tools, 
these tools typically require initial human development with detailed 
documentation and manual integration with LLMs through coding, 
prompt engineering or both. In this context, developing robust interfaces 
and APIs to facilitate interactions between LLMs and digital systems in 
terms of perception and detection of the real-world activities is essential.

For experimentalists with less computational experience, the abil-
ity of the LLM to implement code can democratize access to ML tools 
and AI technologies, enabling more scientists to leverage data-driven 
approaches tailored to their research projects without needing deep 
programming expertise. Furthermore, exploring different ways to 
allow LLMs to write their own code to obtain new data and tools when 
needed, as well as developing multimodal data integration for the 
LLMs to learn cross-connections, can enhance their utility and reduce 
the reliance on pre-existing human-coded tools. This capability would 
enable a more dynamic and responsive laboratory environment in 
which LLMs can continuously adapt and optimize their performance.

It should also be acknowledged that the deployment and uti-
lization of LLMs come with substantial computational and energy 
costs99,100. Training and operating these large models require consider-
able resources and consume a sizable amount of energy, costing money 
and impacting the environment101,102. Thus, there is no ‘free lunch’ when 
adopting LLMs; the benefits come with the responsibility to consider 
sustainability and efficiency in their use.

Importantly, just as raising children requires patience and guid-
ance, one should not expect superhuman productivity from LLMs from 
the outset. Instead, these models should be soberly viewed as helpful 
assistants or agents for sophisticated data mining tasks, material design 
and laboratory synthesis, which serve to simplify and expedite work-
flows that would otherwise require manual human labour and domain 
expertise9,103. By lowering the barriers to access and application, LLMs 
will enable a broader range of individuals to engage in reticular chemis-
try research and innovation across diverse academic and industrial set-
tings. Over time, as the demand for LLM-driven approaches increases, 
so too will the need for more high-quality data sets and more conveni-
ent and versatile LLMs, regardless of open-sourced or closed-sourced. 
As less computationally intensive LLMs are developed to ensure sus-
tainable and responsible use of these powerful tools, the integration 
of various AI-assisted tools into routine reticular chemistry research 
practices will likely accelerate. We envision that the field’s transfor-
mation from a largely empirical science of synthesis to a data-driven 
science will allow more sophisticated challenges to be solved and more 
important discoveries to be made.

Published online: xx xx xxxx
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